

    
      
          
            
  
OpenRTK Developer Manual
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OpenRTK is an integrated GNSS (Global Navigation Satellite System) high precision
chip and precisely calibrated Inertial Measurement Unit open-source platform for
the development of navigation and localization algorithms. Users are able to quickly
develop and deploy custom navigation/localization algorithms and custom sensor integrations
on top of the OpenRTK platform.  OpenRTK also has pre-built drivers in Python as well as
a developer website - Aceinna Navigation Studio (ANS). These tools make logging and plotting data,
including custom data structures and packets very simple.

Social: Twitter [https://twitter.com/MEMSsensortech] |
Medium [https://medium.com/@mikehorton]






















          

      

      

    

  

    
      
          
            
  
Overview

OpenRTK is an integrated GNSS (Global Navigation Satellite System) high precision
chip and precisely calibrated Inertial Measurement Unit open-source platform for
the development of navigation and localization algorithms. A free Visual Studio Code (VSCode)
extension is installed which contains all the software and tools necessary to create
and deploy custom embedded sensor apps using OpenRTK. Visual Studio Code is the recommended IDE
and the extension configures VS Code to include easy access to compilation, code download,
JTAG debug, IMU and GNSS data logging as well as OpenRTK platform updates and news. A developer
website called Aceinna Navigation Studio (ANS) includes additional support tools including a GUI
for controlling, plotting and managing data files logged by your Custom RTK/IMU module. About OpenIMU,
you can refer to Aceinna OpenIMU Developer Manual [https://openimu.readthedocs.io/en/latest/].

[image: _images/Overview.png]
The OpenRTK and ANS platform and tool-chain are supported on all three Major OS cross-development platform:


	Windows 7 or 10


	MAC OS 10


	Ubuntu 14.0 or later





Note

Contributions to the public repositories related to this project are welcomed.  Please submit a pull request.



The following pages cover:


	What is OpenRTK


	What is the Acienna Navigation Studio


	Who is using OpenRTK and the Acienna Navigation Studio










          

      

      

    

  

    
      
          
            
  
What is OpenRTK?

OpenRTK is an open source hardware and software platform for development of high-performance navigation and localization applications on top of multi-constellation, multi-frequency Global Navigation Satellite System (GNSS) chips, a family of low-drift pre-calibrated Inertial Measurement Units (IMU) and cloud based server supports.



	Hardware


	OpenRTK hardware features of a multi-frequency, multi-constellation GNSS chipset from STMicroelectronics (aka ST), a triple-redudant 6-axis IMU sensor module from Aceinna, and an embedded STM32 ARM Cortex-M4 MCU with floating-point computation support for complex positioning engine


	Spare I/O and ports for external sensors such as Odometer, camera for enhanced sensor fusion navigation


	There comes two form-factors as follows:







	Model

	Description



	OpenRTK330LI

	Inertial Navigation System Module – Industrial Grade



	RTK330LA

	Inertial Navigation System Module – Automotive Grade (Contact Aceinna)












	Software


	OpenRTK embedded software (i.e. the module firmware) is developped on top of the standard STM32 Cortex MCU library


	Utilizes the FreeRTOS as the real time operating system for MCU


	Provides a cost-free embedded environment and toolchain using VS Code [https://code.visualstudio.com/] and the associated Aceinna extension (based on PlatformIO [https://platformio.org/])


	Features with open-sourced firmware in the drivers and user interfaces, user can use or modify the provided firmware code to utilize or customize:


	raw IMU data generation in sensor data extraction, pre-filtering and output data rate/format/interface and so on


	UART input/output baudrate/mode/messages


	CAN input/output mode/messages


	Ethernet driver and input/output mode/messages


	SPI driver


	Bluetooth driver






	Features with proprietary positioning engine library (NOT open-sourced):



	GNSS Real Time Kinematic (RTK) positioning engine


	GNSS/IMU integrated Inertial Navigation System (INS) positioning engine













	Cloud Service


	OpenRTK cloud service provides Networked Transport of RTCM via Internet Protocol (NTRIP) server and caster service for GNSS correction data


	Provides online developer site [https://developers.aceinna.com/] for user interface


	Web GUI


	Data and algorithm simulation


	Database for storage


	Live support forum


















          

      

      

    

  

    
      
          
            
  
What is Aceinna Navigation Studio?

[image: ../_images/ANSHome.png]

	The Aceinna Navigation Studio (https://developers.aceinna.com) is a navigation system developer’s website and web-platform.


	It consists of a graphical user interfSace to control and configure OpenRTK units.


	Using a JSON configuration file (“openrtk.json”), the graphical user interface can be customized for user specific
messaging and settings without any additional coding. This aligns the embedded code with both the Python device server
and the GUI pages available on ANS (https://developers.aceinna.com).


	Online tools include graphing, mapping, logging, simulation, GNSS RTK, and GNSS cloud RTK.


	User Forum is available at (https://forum.aceinna.com).




Python & the Acienna Navigation Studio

The Acienna Navigation Studio (ANS) requires Python to operate.  If the user has not installed Python, it can be installed from
https://www.python.org/downloads/.  Download and install the latest version.

An open-source Python driver for openrtk is available and required.  The Python driver can be used directly from the terminal
to load, log, and test your application. The driver leverages the PySerial library to connect to an OpenRTK of a serial connection.  The python script supports configuring units, firmware updates (JTAG is faster for debugging), and local data logging.

In addition, the open-source Python driver can acts as a server connecting the OpenRTK hardware with our ANS developer platform for a GUI experience,
cloud data storage and retrieval, as well as stored file charting/plotting tools.

The Aceinna VS Code extension ensures a python environment automatically.  The OpenRTK python code can be installed independently by cloning the repository https://github.com/Aceinna/python-openimu or using pip as shown below.

pip install openimu








          

      

      

    

  

    
      
          
            
  
Who is using it?

OpenRTK is to be used for commercial applications in agriculture, transportation, unmanned vehicles,
machine control, marine navigation, and other industries where efficiencies can be gained from the
application of precise, continually available position and time information.


Applications

[image: ../_images/whouseit.jpg]
Unmanned Vehicles

Initially, unmanned vehicles were used primarily by the defense industry. However, as the unmanned
vehicle market has grown and diversified, the commercial use of unmanned vehicles has also grown
and diversified. Some of the current civilian uses for unmanned vehicles are: search and rescue,
crop monitoring, wildlife conservation, aerial photography, environmental research, infrastructure
inspection, bathymetry, landmine detection and disposal, HAZMAT inspection and disaster management.
As the civilian unmanned vehicle market expands, so will the civilian use of unmanned vehicles.

Machine Control

GNSS technology is being integrated into equipment such as bulldozers, excavators, graders, pavers
and farm machinery to enhance productivity in the realtime operation of this equipment, and to provide
situational awareness information to the equipment operator. The adoption of GNSS-based machine
control is similar in its impact to the earlier adoption of hydraulics technology in machinery, which
has had a profound effect on productivity and reliability.

Precise Agriculture

In precision agriculture, GNSS-based applications are used to support farm planning, field mapping,
soil sampling, tractor guidance, and crop assessment. More precise application of fertilizers, pesticides
and herbicides reduces cost and environmental impact. GNSS applications can automatically guide farm
implements along the contours of the earth in a manner that controls erosion and maximizes the effectiveness
of irrigation systems. Farm machinery can be operated at higher speeds, day and night, with increased
accuracy. This increased accuracy saves time and fuel, and maximizes the efficiency of the operation.
Operator safety is also increased by greatly reducing fatigue.


Note

This product has been developed exclusively for commercial applications.
It has not been tested for, and makes no representation or warranty as to
conformance with, any military specifications or its suitability for any
military application or end-use. Additionally, any use of this product for
nuclear, chemical or biological weapons, or weapons research, or for any
use in missiles, rockets, and/or UAV’s of 300km or greater range, or any
other activity prohibited by the Export Administration Regulations, is
expressly prohibited without the written consent and without obtaining
appropriate US export license(s) when required by US law. Diversion contrary
to U.S. law is prohibited. Specifications are subject to change without notice.







          

      

      

    

  

    
      
          
            
  
Quick Start


Contents


	OpenRTK330LI EVK Introduction


	Quick Setup and Usage


	Prerequisites


	Usage Steps






	Note






Note: if the figures are blur, click on the figure to see the clearer version


OpenRTK330LI EVK Introduction

The OpenRTK330LI Evalution Kit (EVK) is designed to evaluate the OpenRTK330LI module with the  online Aceinna Navigation Studio (ANS) and related software stack. A full set of OpenRTK330 EVK is shown below after you unpack the product box.


[image: _images/EvalKit1.png]

where



	1: ST-Link debugger


	2: Multi-Constellation and Multi-frequency GNSS antenna, supports


	GPS L1/L2/L5


	GLONASS L1/L2


	GALILEO E1/E5/E6


	BEIDOU B1/B2






	3: Micro-USB cable


	4: OpenRTK330 Evaluation Board (EVB) with metal flat mounting board


	5: 12-V DC adapter with 5.5 x 2.1 mm power jack







The picture below shows the detailed overview of OpenRTK330 EVB



[image: _images/EvalBoard1.png]




where some of the parts are listed here



	1: OpenRTK330 GNSS/IMU integrated module


	2: GNSS antenna SMA interface


	3: Espressif ESP32 bluetooth module


	4: SWD/JTAG connector, 20-pin


	7: Boot mode swtich



	Position A: booting from bootloader


	Position B: normal working mode









	8: RJ45 jack for Ethernet connection


	9: Micro-USB port


	10: 9-pin CAN interface



	Pin-7: CAN_H signal


	Pin-2: CAN_L signal









	12: EVB working status LEDs, yellow, red, and green LED from left to right









Quick Setup and Usage


Prerequisites

Hardware



	OpenRTK330LI EVK


	Ethernet cable (must have, not included in the EVK)


	Ethernet router/network switch (optional, not included in the EVK)







Software



	The online Aceinna Navigation Studio (ANS [https://developers.aceinna.com/devices/rtk]) deverloper website, manily for


	OpenRTK devices management and technical forum and support


	Web-based Graphical User Interface (GUI)


	App center for online firmware upgrade






	The OpenRTK Python driver: Python based program runs on a PC, click here [https://github.com/Aceinna/python-openimu/releases/] to download the latest version of executables


	Send/Receive data from ANS to enable Web GUI and online firmware upgrade for OpenRTK330LI device


	Log and parse OpenRTK330LI output data, positioning solution and other debug information to binary and text files













Usage Steps


	Power and data link: connect the EVB with a PC using a Micro-USB cable, and the YELLOW LED (#12 on the EVB figure above) flashes. The EVB is powered on, and four serial com ports are established on the PC.


	Antenna: connect a GNSS multi-frequency antenna to the SMA interface (#2 on the EVB figure), the GREEN LED (#12 on the EVB figure above) flashes if the incoming GNSS signal is valid


	Network: Use an Ethernet calbe to connect the EVB with a network router or switch, and then connect a PC to the same router/switch using an Ethernet cable. The OpenRTK330LI EVB gets internet access and assigned an IP address in the local network via DHCP.


	GNSS RTK and INS Configuration: open a browser (Google Chrome is recommended), visit http://openrtk,






	You will firstly see the following device running status page


[image: _images/Web_RunningStatus.png]





	On the left side menu bar, click “Work Configuration” tab to choose the following working mode of the device and configure it accordingly:


	Rover: works as a nomarl GNSS positioning unit that is also referring to “NTRIP client” receiving GNSS data correction


	Base: works as a GNSS reference station with known position and sending GNSS data to “NTRIP server” to be used as GNSS data correction




Please refer to the “How-to-use” [https://openrtk.readthedocs.io/en/latest/useOpenRTK.html] chapter for the detailed configurations.


[image: _images/Web_WorkModeNtrip.png]








	On the left side menu bar, click “User Configuration” tab to select the user output data and rate among the options provided, including NMEA0183 messages and Aceinna format binaries


[image: _images/Web_UserConfig.png]





	On the left side menu bar, click “Device Info” tab to have the detailed device information displayed, including firmware version, product number and serial number etc..


[image: _images/Web_DeviceInfo.png]











	Live Web GUI: download the latest Python driver executable (v2.2.4 and later), and run it in a command line, for example:


cd c:\pythondriver-win
.\ans-devices.exe














	Check the console output, the Python driver connects the device and the online ANS website, if successfully, the following connection information is displayed


[image: _images/Web_PythonDriverConnect.png]





	Go to the online ANS [https://developers.aceinna.com/], on the left side menu bar, click “Devices”->”OpenRTK”, then we will have the “OpenRTK Monitor” webpage as shown below, and the center “Play” button is highlighted indicating correct device connection with the Web GUI,


[image: _images/Web_OpenRTKMonitor.png]





	Click “Play”, you will have a live web GUI showing positioning information, map presentation and associated satellites information


[image: _images/web_gui_play.png]











	Data Logging and Parsing: when the device is connected with the PC via the micro-USB cable, the running Python driver is logging all serial port output into files, including raw GNSS/IMU data, positioning solution and the device configuration. These files are located in a subfolder labelled “.pythondriver-windataopenrtk_log_xxxxxxxx_xxxxxx”, e.g.


[image: _images/python_driver_logged_data.png]








which,



	configuration.json: is the device configuration information


	rtcm_base_xxxx_xx_xx_xx_xx_xx.bin: is the received GNSS RTK correction data through internet, in RTCM format


	rtcm_rover_xxxx_xx_xx_xx_xx_xx.bin: is the GNSS raw data from the device, in RTCM format


	user_xxxx_xx_xx_xx_xx_xx.bin: is the output from the USER UART, including NMEA0183 messages in ASCII format, raw IMU data and GNSS RTK/INS solution in binary format










Go to the “openrtk_data_parse” subfolder, run the parser executable as below


cd c:\pythondriver-win\
.\ans-devices.exe parse -t openrtk -p ..\data\openrtk_log_20201217_141618








A subfolder with the name “user_xxxx_xx_xx_xx_xx_xx_p” is created and contains the decoded files all in ASCII format, e.g.


[image: _images/python_driver_parsed_data.png]



which:


	user_xxxx_xx_xx_xx_xx_xx.nmea: contains the GGA and RMC NMEA0183 messages


	user_xxxx_xx_xx_xx_xx_xx_g1.csv: is the GNSS RTK solution


	user_xxxx_xx_xx_xx_xx_xx_s1.csv: is the raw IMU data


	user_xxxx_xx_xx_xx_xx_xx_y1.csv: is the GNSS satellites information that are used in the solution







Note

This section presents a brief introduction and quick start on using OpenRTK330LI EVK for RTK and INS positioning. Please refer to the remaining sections of this tutorial chapter to explore more on OpenRTK330LI’s features and its usage.





          

      

      

    

  

    
      
          
            
  
How to Use OpenRTK330 EVK?

Note the usage of OpenRTK330 is described with the OpenRTK330 EVK. There are two types of user APP provided to interact with both the module and a NTRIP server over the internet providing GNSS correction data for RTK positioning:


	PC: using the Ethernet interface


	Ethernet connectivity between module and NTRIP server with a lightweight TCP/IP stack embedded in firmware


	Module settings on positioning parameters and user configuration with a web GUI embedded in firmware


	Map and positioning information display on the online web GUI (“OpenRTK Monitor” [https://developers.aceinna.com/devices/rtk]) of Aceinna developer website

[image: _images/PC_tool.png]






	Android: the “OpenRTK” Android App with the following contents


	Bluetooth connectivity to module


	4G connectivity to NTRIP server


	Map display with user trajectory and positioning infromation


	Module settings on positioning parameters and user configuration

[image: _images/Mobile_APP.png]








The following two subsections cover the detailed steps of using the two types of user App.







          

      

      

    

  

    
      
          
            
  
With a PC

Using the OpenRTK330L EVK to evaluate the OpenRTK330L product with a PC requires



	access to the online web based Aceinna Navigation Studio (ANS) via the Micro-USB connection between the EVB and the PC


	access to NTRIP server over the internet via a Ethernet connection between the EVB and the PC








Usage


	Power and data link





Connect the EVB with a PC using a Micro-USB cable, and the YELLOW LED (#12 on the EVB figure above) flashes. The EVB is powered on, and four serial ports are established on the PC.





	Antenna





Connect a GNSS multi-frequency antenna to the SMA interface (#2 on the EVB figure), the GREEN LED (#12 on the EVB figure above) flashes if the incoming GNSS signal is valid





	Network





There are two ways of for the OpenRTK330LI EVB gets access to internet:


	Use an Ethernet calbe to connect the EVB with a network router or switch, and then connect a PC to the same router/switch using an Ethernet cable. The OpenRTK330LI EVB gets internet access and assigned an IP address in the local network via DHCP.


	The other way is using an Ethernet cable to connect the EVB and the PC directly, which requires internet sharing between the PC and the EVB. For example, with a Windows 10 PC,


	Go to Control PanelNetwork and InternetNetwork Connections, an Ethernet subnetwork is established for the Ethernet connection between the EVB and the PC, e.g. “Ethernet 2” as shown below.

[image: ../_images/network_connections.png]


	Right-click “Ethernet 2”, and then click “Properties”, on the “Networking” tab, click “Internet Protocol Version 4 (TCP/IPv4)”, configure the IP settings as follows: the gateway has to be 192.168.137.1, and the subnet mask has to be 255.255.255.0, while the IP address can be assigned to one that has not been taken in the network 192.168.137.xx.


[image: ../_images/network_setting_eth.png]





	Then, right-click WLAN (assuming the PC uses WiFi for internet access), go to Properties->Sharing, check the “Allow other network users to connect through this computer’s internet connection”, and select “Ethernet 2” on the drop down menu below, click “OK” to enable the EVB to have access to internet shared by the PC.


[image: ../_images/network_sharing.png]















	Device Configuration on the Embedded Web Pages





A lightweight TCP/IP web service is embedded inside the OpenRTK330 firmware, user can access the device configurations on the embedded web pages when the device and the PC are in the same local Ethernet network (connected to the same router or direclty connected). Open a browser (Google Chrome is recommended), visit http://openrtk,


	You will firstly see the following device running status page


[image: ../_images/Web_RunningStatus1.png]



Besides the positioning information, this web page displays the working mode and status of the device on the most left-upper conner,



	Station Mode, has the following two values:


	NTRIP-CLIENT: the device works as a NTRIP client (Rover), and is used as a positioning/navigation equipment


	NTRIP-SERVER: the device works as a NTRIP server (Base), and broadcasts its GNSS data to NTRIP clients for differential GNSS operation




and the mode changes when the user configures the device differently in the “Work Configuration” tab.



	Station Status, has the following thirteen values:


	“Waiting…”: waiting for changes to take effective


	“NTRIP-CLIENT & CONNECT…”: trying to connect with a NTRIP server


	“NTRIP-CLIENT & CONNECT FAIL”: failed to connect with a NTRIP server


	“NTRIP-CLIENT & CONNECTED”: connect with a NTRIP server successfully, waiting for GNSS correction data


	“NTRIP-CLIENT & RTCM AVAILABLE”: received GNSS correction data successfully from the NTRIP server


	“NTRIP-SERVER & CONNECT…”: trying to connect with a NTRIP caster


	“NTRIP-SERVER & CONNECT FAIL”: failed to connect with a NTRIP caster


	“NTRIP-SERVER & CONNECTED”: connect with a NTRIP caster successfully, waiting to output GNSS correction data


	“NTRIP-SERVER & RTCM OUTPUT”: outputting GNSS correction data


	“OpenARC CONNECT…”: trying to connect with Aceinna’s OpenARC cloud service (e.g. NTRIP server and data service)


	“OpenARC CONNECT FAIL”: failed to connect with Aceinna’s OpenARC cloud service


	“OpenARC CONNECTED”: connect with a  Aceinna’s OpenARC cloud service successfully, waiting for GNSS correction data


	“OpenARC RTCM AVAILABLE”: received GNSS correction data successfully from Aceinna’s OpenARC cloud service













	On the left side menu bar, click “Work Configuration” tab to choose the following working mode of the device and configure it accordingly:


	Rover: works as a nomarl GNSS positioning device that is also referring to “NTRIP client”, and receives GNSS data correction from a NTRIP server that has to be configured with the following information, as shown by the “OpenARC Client” tab below


	IP: openarc.aceinna.com


	PORT: 8011


	Mount Point: RTK


	User Name: username


	Password: password




[image: ../_images/Web_WorkModeNtrip1.png]
OpenARC is a cloud service provided by Aceinna for users in the United States to receive nation-wide GNSS correction data for RTK operation, without the need to set up a local GNSS base station. More details refer to the section “OpenARC Service” (click here [https://openrtk.readthedocs.io/en/latest/openarc_service.html]) in this tutorial.



	Base: works as a GNSS reference station with known position and sending GNSS data to “NTRIP server” to be used as GNSS data correction












	Live Web GUI on the Online ANS Website





Download (click here [https://github.com/Aceinna/python-openimu/releases/tag/v2.2.4]) the latest Python driver executable (v2.2.4 and later), and run it in a command line, for example:


cd c:\pythondriver-win
.\ans-devices.exe









	Check the console output, the Python driver connects the device and the online ANS website, if successfully, the following connection information is displayed


[image: ../_images/Web_PythonDriverConnect1.png]





	Go to the online ANS [https://developers.aceinna.com/], on the left side menu bar, click “Devices”->”OpenRTK”, then we will have the “OpenRTK Monitor” webpage as shown below, and the center “Play” button is highlighted indicating correct device connection with the Web GUI,


[image: ../_images/Web_OpenRTKMonitor1.png]





	Click “Play”, you will have a live web GUI showing positioning information, map presentation and associated satellites information


[image: ../_images/web_gui_play1.png]











	Data Logging and Parsing on a PC





	With the UART/Serial port

When the device is connected with the PC via the micro-USB cable, the running Python driver is logging all serial port output into files, including raw GNSS/IMU data, positioning solution and the device configuration. These files are located in a subfolder labelled “.pythondriver-windataopenrtk_log_xxxxxxxx_xxxxxx”, e.g.



[image: ../_images/python_driver_logged_data1.png]



which,



	configuration.json: is the device configuration information


	rtcm_base_xxxx_xx_xx_xx_xx_xx.bin: is the received GNSS RTK correction data through internet, in RTCM format


	rtcm_rover_xxxx_xx_xx_xx_xx_xx.bin: is the GNSS raw data from the device, in RTCM format


	user_xxxx_xx_xx_xx_xx_xx.bin: is the output from the USER UART, including NMEA0183 messages in ASCII format, raw IMU data and GNSS RTK/INS solution in binary format










Go to the “openrtk_data_parse” subfolder, run the parser executable as below


cd c:\pythondriver-win\
.\ans-devices.exe parse -t openrtk -p ..\data\openrtk_log_20201217_141618








A subfolder with the name “user_xxxx_xx_xx_xx_xx_xx_p” is created and contains the decoded files all in ASCII format, e.g.


[image: ../_images/python_driver_parsed_data1.png]



which:


	user_xxxx_xx_xx_xx_xx_xx.nmea: contains the GGA and RMC NMEA0183 messages


	user_xxxx_xx_xx_xx_xx_xx_g1.csv: is the GNSS RTK solution


	user_xxxx_xx_xx_xx_xx_xx_s1.csv: is the raw IMU data


	user_xxxx_xx_xx_xx_xx_xx_y1.csv: is the GNSS satellites information that are used in the solution









	With the CAN Interface

User could use a CAN-USB (e.g. https://canable.io/) or CAN-TTL adapter to connect with the DB-9 male interface on the EVB to log and parse the CAN messages (click here [https://openrtk.readthedocs.io/en/latest/communication_port/Can_port.html] for definitions). Note that user has to write their own CAN message parsing code using the provided lib or open-source code from the adapter provider.









          

      

      

    

  

    
      
          
            
  
With an Android Smartphone

Using the OpenRTK330L EVK to evaluate the module requires


	the installation the “OpenRTK” Android App: provides 4G access to NTRIP server over the internet


	Micro-USB connection to a PC for power and data logging connection





“OpenRTK” App Installation


	Scan the QR code below or click here [https://developers.aceinna.com/static/appDownload.html/] to download the Android apk installation file. Make sure your Android version is 8.0 or above.





[image: ../_images/ercode.png]




	Open the downloaded APK file to install the App






Note

Please grant the OpenRTK App access to run in Android system’s backend.








Usage Steps


	Connection







	Connect the OpenRTK330 EVB to a PC via a Micro-USB cable, then connect the EVB with a GNSS antenna, checking the LED lights for working status





	YELLOW: flashing light indicating GNSS chipsets is powered on with valid 1PPS signal output


	GREEN: flashing light indicating OpenRTK330L INS App is running correctly with valid GNSS signal receiving





	Enable “Bluetooth” function and “Location” access right for “OpenRTK” App on your Anroid device


	Open the “OpenRTK” Andorid App, as shown by the picture below, go to the “Connect” tab and click the “search” icon (right bottom) to search for your device. If your OpenRTK330 device is found, a Bluetooth device ID appears on the “Connect” list. By factory setting, the Bluetooth device ID is “OpenRTK_<four digits>” and the four digits are the last four digits of your OpenRTK330 module S/N. Click your Bluetooth device ID and if connected successfully, a notification appears




[image: ../_images/connect_success.jpeg]




	Besides, detailed Bluetooth connection and user configuration information of the device can be found on the lower window of the “Log” tab, and NMEA GGA messages are reporting the OpenRTK330 device position on the upper window of the “Log” tab.





[image: ../_images/connectLog.jpg]







	Map Presentation






	Once the Bluetooth connection made successfully, and OpenRTK330 is reporting positioning information to Android App, go to “Map” tab and click “Start Live Data” to start a live map presentation





[image: ../_images/live_map_start.jpg]




	Real time positioning information and trajectory is shown





[image: ../_images/live_map.jpg]







	NTRIP Configuration






	In order to get GNSS RTK positioning, go to “NTRIP” tab and configure the NTRIP server settings of your GNSS correction data provider


[image: ../_images/ntrip_config.jpeg]





	Click “SAVE” to save your NTRIP server settings to your OpenRTK330 module, and then switch on “Pull Base” to get GNSS correction data for RTK


[image: ../_images/ntrip_success.jpeg]











	User Configuration.





From anyone of the four tabs, you can access the menu for user configuration by clicking the icon “≡” at the upper left corner

[image: ../_images/leftMenu.png]

	Click “Device Advanced”: user can change and save OpenRTK330 device settings, like Bluetooth ID, lever arm and so on.

[image: ../_images/customDeviceConfig.jpg]


	Click “Developer Option”: user can configure the Android App on map presentation and switch on/off of saving positioning results (NMEA GGA messages only) to Android phone storage. The defualt storage path is “Android/data/com.aceinna.rtk/files/log”

[image: ../_images/android_app_config.jpeg]








	Data Logging





In the mobile use case, user still needs a PC to log the device output data into files, the OpenRTK Android app doesnot log data on the phone. Refer to the previous section “With a PC” for data logging details.








          

      

      

    

  

    
      
          
            
  
EVK Vehicle Installation






Reference coordinate frames

In order to install the OpenRTK330 EVB on vehicle for driving test, a few reference frames listed below has to be defined



	The IMU body frame is defined as below and shown in the figure. By default the INS solution of OpenRTK330 is provided at the center of navigation of the IMU (refer to the mechanical drawing [https://openrtk.readthedocs.io/en/latest/EVK-OpenRTK330LI/mechanical.html] for accurate IMU navigation center position on the EVB).






	x-axis: points to the same direction as the SMA antenna interface


	z-axis: perpendicular to x-axis and points downward


	y-axis: points to the side of the EVK and completes a right-handed coordinate system


[image: ../_images/imu_body_xyz.jpeg]









	The vehicle frame is defined as


	x-axis: points out the front of the vehicle in the driving direction


	z-axis: points down to the ground


	y-axis: completes the right-handed system



[image: ../_images/vehicleFrame.jpg]










	The local level navigation frame is defined as


	x-axis: points north


	z-axis: points down parallel with local gravity


	y-axis: points east






	The user output frame is used to transfer the INS solution to a user designated position.









Installation Parameters

Depends on the vehicle installation of the OpenRTK330 system, user has to configure two types of offsets to make the GNSS integrated INS solution work



	Translation offset


	GNSS antenna lever-arm: GNSS position is estimated to the phase center of the GNSS antenna, and INS position is estimated to the center of the navigation of the IMU. The translation from the IMU center to the phase center of the GNSS antenna has to be known and applied to the integrated system via user configuration of the antenna lever-arm. The GNSS/INS integrated solution outputs position at the IMU center. For example, the lever arm in the figure below is [x, y, z] = [-1.0, -1.0, -1.0] meter.






[image: ../_images/LeverArm.jpg]





	User output lever-arm: If user wants the above GNSS/INS integrated solution output at a more useful position, the translation between the IMU center and the designated point of interest has to be known and applied via user configuration of point of interest lever-arm.






	Rotation offset: If the axes of the IMU body frame of the installed OpenRTK330 unit is not aligned with the vehicle frame, the orientation of the IMU relative to the vehicle also has to be known and applied via user configuration of rotation angles between the IMU body frame and vehicle frame. For example, given a installation setup as shown by the following figure



[image: ../_images/OpenRTKINSrbv1.png]









We have to mathematically rotate the IMU body frame to align with the vehicle frame, in the following order:



	Rotate IMU cooridnate frame to get z-axis aligned


	Rotate IMU cooridnate frame to get x-axis aligned


	Rotate IMU cooridnate frame to get y-axis aligned







For the example above, firstly rotate 90 degrees clockwise along IMU y-axis to align z-axis of two frames,



[image: ../_images/OpenRTKINSrbv2.png]




Then rotate 90 degrees counter-clockwise along IMU z-axis to align x-axis of two frames.



[image: ../_images/OpenRTKINSrbv3.png]




The final rotation matrix angles that user has to configure are [x, y, z] = [0, -90, 90] degrees.









Odometer Input from Vehicle

To fully explore the dead reckoning (DR) for vehicular positioning, OpenRTK330LI EVK has the following three options to get the Odometer data input from the vehicle:



	CAN interface


	wheel-tick signal and FWD (i.e. forward) signal


	USER UART input message




CAN interface

User is recommended to use a OBDII-CAN cable to connect the EVB DB-9 interface with one OBDII interface on the vehicle, the following photos show an example


[image: ../_images/can_for_odometer.png]



The CAN message contains vehicle Odometer speed data is different among manufacturers, OpenRTK330LI EVK provides user configuration on the internal Web interface (https://openrtk) to accommondate the different input CAN messages, as shown below


[image: ../_images/can_odo_msg_config.png]



User has to check the “CAR” option for the CAN mode to enable the data input working mode of the CAN interface, as shown in the red circle. In the table above, user input the following fields to configure how the OpenRTK330LI module should parse the incoming Odometer message from CAN bus:



	MesgID: CAN message ID, decimal value


	Startbit: the number of starting bit of the Odometer data


	Length: the Odometer data Length in number of bits


	Endian: 0 - little endian; 1 - big endian


	Sign: 0 - unsigned; 1 - signed


	Factor and Offset: actual Odometer value = (original value + Offset) * Factor


	Unit: 0 - km/h; 1 - mph; 2 - m/s


	Source:


	0 - right-rear wheel speed (RR)


	1 - left-rear wheel speed (LR)


	2 - vehicle speed (combined)


	3 - gears: fill-in the gear (P, R, N, and D) value in the table below











There are two options to input the vehicle speed depending on the Odometer CAN messages,



	Configure the source to have RR and LR enalbed to obtain aveaged real wheel speed


	Configure the source to have a single combined vehicle speed







and the first option above is recommendded.

USER UART interface

With this approach, user need to extract vehicle speed information from the CAN bus or the wheel speed encoder and send in the real vehicle speed value through the USER UART, using the “cA” packet described in the USER UART data protocol section [https://openrtk.readthedocs.io/en/latest/communication_port/User_uart.html#user-uart-data-packet].

Wheel-tick encoder interface

Another approach to integrate vehicle speed for DR is shown below. A typical aftermarket wheel-tick encoder is shown on the left. Note that OpenRTK330LI EVB currently only supports one wheel-tick encoder input. As shown by the right side photo below, the phase-A and phase-B should connect with the #47 and #48 jumper on the EVB, respectivelly. The input voltage for the pins of OpenRTK330LI EVB is 3.3 v, if the wheel-tick encoder output voltage does not fit, user has to bring in additional voltage conversion circuits or module.


[image: ../_images/wheel-tick_encoder_for_odo.png]



In the current design, the wheel-tick input processing takes over the interrupter of the MCU from the SPI communication ports, thus user needs to choose one of two working mode on the internal web interface page, as shown by the red circle in the figure below


[image: ../_images/wheel-tick_odo_config.png]










          

      

      

    

  

    
      
          
            
  
Firmware Online Upgrade


Contents


	WARNING!!!


	Firmware Upgrade Online







WARNING!!!


	SAVE BEFORE DEVELOPMENT START: it’s strongly recommended to save your factory OpenRTK330 module system image file to a binary file to be able to recover the whole system if something unexpected happened! Especially, if the system bootloader and IMU calibration tables are damaged, OpenRTK330 will not work properly.






	Save system image


	Download and install ST-Link Utility from here [https://www.st.com/en/development-tools/stsw-link004.html]


	Connect ST-Link debugger between OpenRTK330 EVB and PC and power on the EVB


	Open ST-Link Utility software on the PC and go to Target->Connect


	Enter value 0x08000000 in Address box and 0x100000 in Size box as shown by the figure below, then hit enter


	Click File->Save As to save the system image file






[image: _images/save_image.png]






	Recover system image


	Connect ST-Link debugger between OpenRTK330 EVB and PC and power on the EVB


	Open ST-Link Utility software on the PC and go to Target->Connect


	Click File->Open and open previously saved image file


	Click Target->Program & Verify and make sure that the start address is 0x08000000 before you click Start button to re-programming the OpenRTK330 module






[image: _images/re-download_image.png]





	Click Target->Option Bytes and select “sector 0”, “sector 1”, “sector 2”, “sector 3” and “sector 11” to perform write protection. Click Apply button for make it effective.






[image: _images/protect_sections.png]













Firmware Upgrade Online

Work with the online App Center of ANS (click here [https://developers.aceinna.com/code/apps]) to install/update the OpenRTK330 module firmware, as shown by



[image: _images/download_openrtk330_firmware.png]




First, upgrade OpenRTK330LI bootloader (to v1.1.1 and later, Win10 only):



	Connect ST-LINK debugger between a PC and the EVB


	Use a Micro-USB cable to connect the PC and the EVB and power on the EVB


	Download the Bootloader bin file from the App center as shown by the above figure


	Open ST Utility software, click Target->Connect, then click Target->Program & Verify, on the pop dialog as shown below, load the downloaded bootloader bin file from step 3, check “Verify while programming” and “Reset after programming”, click “Start” button



[image: _images/programming_bootloader.png]






	Remove ST-LINK debugger from the EVB







Secondly, follow the steps below to upgrade OpenRTK330 firmware:



	Click here [https://github.com/Aceinna/python-openimu/releases] to download the latest Python driver (v2.3.0 and later), e.g. “pythondriver-win.zip” for Windows 10


	Unzip the Python driver on a PC, and run the excutable file “ans-devices.exe” in a command line, e.g.





c:\pythondriver-win\ans-devices.exe









	Upgrade OpenRTK330 INS App






	Power on the EVB via connecting a Micro-USB cable between the EVB and a PC, the YELLOW LED starts flashing


	The python driver keeps scanning available serial ports to connect with OpenRTK330, if connected successfully, you will see the following console output



[image: _images/python_driver_connects.png]






	On the above App Center webpage, click “GNSS_RTK_INS” App, and then click the highlighted “UPGRADE” button, the YELLOW LED stops blinking and the GREEN LED starts blinking quickly


[image: _images/app_upgrade.png]



	Upon finishing, you will see the dialog below on the App Center webpage. USER DO NOT have to do any operation, wait for the YELLOW LED to recover blinking. The GREEN LED will start blinking if connected to a GNSS antenna with valid signal receiving


[image: _images/App_Upgrade_Suc.png]

















          

      

      

    

  

    
      
          
            
  
OpenARC GNSS Correction Service


Contents


	Introduction


	Usage with the OpenRTK330LI Module







Introduction

OpenARC is Aceinna’s precise positioning platform that offers easy system integration of GNSS corrections with high performance GNSS RTK/INS hardware. OpenARC provides secure GNSS corrections powered by a dense RTK network nation-wide over the United States and a cloud-based architecture.OpenARC offers performance (<10 cm accuracy with no latency), security and integrity (fault tolerance and encryption) and flexibility, while being cost effective.

OpenARC service is inherently supported by the OpenRTK330LI navigation module and its cloud service interface is embedded in the module firmware, and provides a vertically integrated and seamless positioning platform for industrial and autonomous vehicle applications.



Usage with the OpenRTK330LI Module


	Register an OpenARC user account






	Go to https://openarc.aceinna.com, click “Sign Up” to register an account.





[image: _images/openarc_signup.png]




	On the Sign Up page, enter the user name, email, password and confirm password to register, or directly use your GitHub account to register





[image: _images/openarc_signup_info.png]







	Create GNSS correction service account






	Login your OpenARC user account, click on your username that is located on the right-upper corner of the web page, then click on “RTK credentials”





[image: _images/openarc_rtkcre.png]




	On the “RTK Credentials” web page, click “Add” button





[image: _images/openarc_rtkcre_add.png]




	On the “Create RTK Credentials” webpage, create a username and password for your GNSS correction data service, which will be used as the “username” and “password” for a typical NTRIP setting, e.g.



	IP Address: openarc.aceinna.com


	PORT: 8011


	Mount Point: RTK


	User Name: username


	Password: password















	Subscribe correction service






	On your OpenARC account webpage, click “Subscriptions” on the left side menu, and then click the “Add” button to create a new data service subscription,

[image: _images/openarc_subscribe.png]


	On the “Create Subscription” page, select the subscription type and modify the number of devices that will be associated with this subscription, and then click “Submit” button to get to the payment page,





[image: _images/openarc_choose_subscribe.png]




	Fill in your payment method information, and complete the OpenARC GNSS correction service account creation and subsription.





[image: _images/openarc_payment.png]







	Bundle your OpenRTK330LI device






	On your OpenARC account webpage, click “Devices” on the left side menu, and then click the “Add” button to start adding a device,





[image: _images/openarc_add_device.png]




	On the pop up window, enter your OpenRTK330LI device’s serial number manually. This step is optional as OpenARC will associate your device with your subscription automatically when the device is connected with OpenARC for the first time. Each OpenRTK330LI device has a service trial time after you registered with OpenARC by default, which means during this time you can perform RTK positioning with OpenRTK330LI device.





[image: _images/openarc_add_sn.png]




	Once your OpenRTK330LI device is associated your OpenARC account, for each device on the device list you can click the “bind” button to bundle with your purchased RTK correction service subscription.





[image: _images/openarc_bind.png]
[image: _images/openarc_bind_sub.png]










          

      

      

    

  

    
      
          
            
  
The OpenRTK330LI Module

The Aceinna OpenRTK330 module integrates a ST Teseo V automotive grade
multi-constellation, multi-frequency Global Navigation Satellite System
(GNSS) chipset (supports GPS, GALILEO, GLONASS, Beidou, QZSS), a
triple-redundant 6-axis (3-axis accelerometer and 3-axis gyro) MEMS
Inertial Measurement Unit (IMU), and a ST M4 MCU as the processor.
OpenRTK330 module is targeted for commecial applicaiton for the mass
market that requires a reliable, high-precision and yet cost effective
GNSS/INS integrated positioning solution.

Features with:



	100 Hz GNSS/INS integrated position, velocity and attitude solution


	Integrated tripple redundant 6-axis IMU sensors


	Integrated multi-frequency GNSS chipset with the following two frequency plans








	GNSS

	L1/L2 plan

	L1/L5 plan



	GPS

	L1 C/A + L2C

	L1 C/A + L5



	GLONASS

	G1

	G1



	BeiDou

	B1I + B2I

	B1I + B2A



	Galileo

	E1 + E5b

	E1 + E5a



	QZSS

	L1C + L2C

	L1C + L5








	RTK algorithms on-board for up to centimetre accuracy


	UART / SPI / CAN / Ethernet Interfaces













          

      

      

    

  

    
      
          
            
  
Technical characteristics








	Accuracy 1



	Horizontal Position Accuracy (RMS)



	SPS

	1.2 m CEP



	RTK 2

	0.02 m



	10s GNSS Outage

	0.4 m



	Vertical Position Accuracy (RMS)



	SPS

	1.8 m CEP



	RTK

	0.03 m



	10s GNSS Outage

	0.6 m



	Velocity Accuracy (RMS)



	Horizontal

	0.02 m/s



	Vertical

	0.02 m/s



	Heading Accuracy (RMS) 3

	0.5°



	Attitude Accuracy (Roll/Pitch, RMS)

	0.1°



	Operating Limits



	Velocity

	515 m/s



	Acceleration

	8 g



	Angular Rate

	400 °/s



	Temperature Calibration Range

	-40 °C to +85 °C



	Timing



	Time to First Fix 4



	Cold Start 5

	< 60 s



	Warm Start 6

	< 45 s



	Hot Start

	< 11 s



	Signal Re-acquisition

	< 2 s



	RTK Initialization Time

	< 15 s



	INS PVA output rate

	100 Hz



	Sensitivity



	Tracking

	-160 dBm



	Cold Start

	-140 dBm



	Environment



	Operating Temperature (°C)

	-40 to +85



	Non-Operating Temperature (°C)

	-55 to +105



	Vibration

	IEC 60068-2-6 (5g)



	Shock survival

	MIL-STD-810G (40g)



	Electrical



	Input Voltage (VDC)

	2.7 to 5.5 V



	Power Consumption (W)

	1.0 (Typical)



	Digital Interface

	UART, CAN, SPI, Ethernet



	Physical



	Package Type

	50-pin LGA



	Size (mm)

	31 x 34 x 5



	Weight (gm)

	5






Notes


	1

	Typical values, subject to ionospheric/tropospheric conditions, satellite geometry,
baseline length, multipath and interference effects.



	2

	Add 1ppm of baseline length.



	3

	After dynamic motion initialization.



	4

	Typical values.



	5

	No previous satellite or position information.



	6

	Using ephemeris and last known position.










Pin Definitions


[image: ../_images/OpenRTK330LI_pin_n.png]








	No.

	Name

	Type

	Description



	1

	GND

	P

	Ground



	2

	GND

	P

	Ground



	3

	GND

	P

	Ground



	4

	GND

	P

	Ground



	5

	VBAT

	P

	Reserved



	6

	LED2

	O

	Status2 LED



	7

	LED1

	O

	Status1 LED



	8

	ETH_RESET

	O

	Reset signal of ETH RMII interface



	9

	RMII_TXD0

	O

	Transmit data0 of ETH RMII interface



	10

	RMII_TXD1

	O

	Transmit data1 of ETH RMII interface



	11

	RMII_TX_EN

	O

	Transmit enable of ETH RMII interface



	12

	VDD_CORE

	P

	Reserved



	13

	VIN

	P

	Typical DC3.3V, input voltage DC3.0V~3.6V



	14

	RMII_RXD1

	I

	Receive data1 of ETH RMII interface



	15

	ETH_MDC

	O

	Management interface (MII) clock output



	16

	RMII_RXD0

	I

	Receive data0 of ETH RMII interface



	17

	RMII_REF_CLK

	I

	Clock signal of ETH RMII Interface



	18

	ETH_MDIO

	I/O

	Management interface (MII) data I/O



	19

	RMII_CRS_DV

	O

	Carrier sense/receive data valid output of ETH RMII interface



	20

	GND

	P

	Ground



	21

	GNSS_1PPS

	I

	1PPS signal from external GNSS module



	22

	GNSS_RTK_STAT

	I

	RTK status signal from external GNSS module



	23

	GNSS_RSTn

	O

	Reset signal to external GNSS module



	24

	GNSS_TX

	I

	Receive data from external GNSS module



	25

	GNSS_RX

	O

	Transmit data to external GNSS module



	26

	DEBUG_NRST

	I

	Reset signal of MCU debug interface



	27

	WIFI/BT_RESET

	O

	Rest signal for external WIFI/BT module



	28

	WIFI/BT_BOOT_CTL

	O

	Boot mode select signal for external WIFI/BT module



	29

	USER_MOSI

	I

	SPI interface.  Receive data from master



	30

	USER_SCK

	I

	SPI interface. Clock signal from master



	31

	USER_NSS

	I

	SPI interface. Chip selected signal from master



	32

	USER_MISO

	O

	SPI interface. Transmit data to master



	33

	LED3

	O

	Status3 LED



	34

	ST_BOOT_MODE

	I

	Boot mode control signal for internal ST GNSS chip



	35

	WIFI/BT_UART2_RX

	I

	Receive data from external WiFi/BT module



	36

	WIFI/BT_UART2_TX

	O

	Transmit data to external WiFi/BT module



	37

	CAN_AB

	O

	CAN bus transceiver loopback mode control



	38

	CAN_120R_CTL

	O

	CAN termination resistor control (ON/OFF)



	39

	USER-DRDY

	O

	Data ready signal



	40

	GND

	P

	Ground



	41

	LTE1_TX

	O

	Transmit data to external LTE module 1



	42

	LTE1_RX

	I

	Receive data from external LTE module 1



	43

	LTE1_PWR

	O

	Power control signal for external LTE module 1



	44

	LTE1_RSTn

	O

	Reset signal of external LTE module 1



	45

	LTE2_RSTn

	O

	Reset signal of external LTE module 2



	46

	GND

	P

	Ground



	47

	LTE2_RX

	I

	Receive data from external LTE module 2



	48

	LTE2_TX

	O

	Transmit data to external LTE module 2



	49

	ST_UART_PROG_TX

	O

	Receive data from internal ST GNSS UART2 (GNSS program burning)



	50

	ST_UART_PROG_RX

	I

	Transmit data to internal ST GNSS UART2 (GNSS program burning)



	51

	DEBUG_TX

	O

	Transmit data. DEBUG serial port



	52

	DEBUG_RX

	I

	Receive data. DEBUG serial port



	53

	CAN_RX

	I

	Receive data from CAN bus



	54

	CAN_TX

	O

	Transmit data to CAN bus



	55

	USER_UART1_RX

	I

	Receive data. USER port



	56

	USER_UART1_TX

	O

	Transmit data. USER port



	57

	SWDIO

	I/O

	Data IO of SWD debug interface



	58

	SWCLK

	I

	Clock signal of SWD debug interface



	59

	ST_UART1_TX

	O

	Transmit data from internal ST GNSS UART1 port (debug data)



	60

	ST_UART1_RX

	I

	Receive data to internal ST GNSS UART1 port (debug data)



	61

	1PPS

	O

	1PPS signal



	62

	LTE2_PWR

	O

	Power control signal for external LTE module 2



	63

	LNA_EN

	O

	Control signal of external LNA power



	64

	ANT_EN

	O

	Antenna enable, reserved



	65

	ANT_SENSE

	I

	Antenna sensing detection, reserved



	66

	AGND

	P

	Internal GNSS RF path ground



	67

	ANT_IN

	I

	GNSS antenna signal input



	68

	AGND

	P

	Internal GNSS RF path ground












          

      

      

    

  

    
      
          
            
  
Communication Ports and Operation

USER UART has serial port IAP (program firmware APP) function, ST UART PROG serial port is
the serial port for SDK firmware programming, users must connect. BT UART and ETH can pull
base rtcm3 for RTK operation, users need to choose at least one connection. Other interface
users can connect according to their needs. The hardware design can refer to OpenRTK330 EVK.


User Port


	Pin: USER_UART_RX(#55), USER_UART_TX(#56)


	Default configuration






	Baud tare: 460800 b/s


	Stop bit: 1


	Data bits: 8


	Check Digit: None








	Data format: ACEINNA format, NMEA format


	The main function






	Obtain module information: hardware version number, software version number;


	Obtain and configure module user parameters;


	Send data packets: IMU raw data, positioning data, satellite data;


	Send NMEA format data;








	Function details





The following takes configuration parameters as an example to introduce how to use the ACEINNA format:


	Send the “gA” command to the module to obtain all current user parameters:





gA command: [0x55, 0x55, 0x67, 0x41, 0, 0x31, 0x0A]





	Use the “uP” command to modify the  parameters:





uP command: [0x55, 0x55, 0x75, 0x50, data length, parameter number, parameter value, CRC_L, CRC_H]

For example: configure the three parameters of leverArmBx, leverArmBy, leverArmBz to
[0.5, -0.5, 1] ​​(unit m), you need to send the “uP” command three times, and the setting result will
be returned each time. After the last setting result is returned, send again Set the command next time.


	Configure leverArmBx: [0x55, 0x55, 0x75, 0x50, 0x08, 0x04, 0, 0, 0, 0, 0, 0, 0x3F, 0x1D, 0x32]


	Configure leverArmBy: [0x55, 0x55, 0x75, 0x50, 0x08, 0x05, 0, 0, 0, 0, 0, 0, 0xBF, 0xCB, 0x69]


	Configure leverArmBz: [0x55, 0x55, 0x75, 0x50, 0x08, 0x06, 0, 0, 0, 0, 0, 0x80, 0x3F, 0x89, 0x0C]








	Use the “sC” command to save the parameter value:





sC command: [0x55, 0x55, 0x73, 0x43, 0, 0xC8, 0xCB]








Special Note

"initial":{
   "useDefaultUart": 1,
      "uart":[
       {
           "name": "GNSS",
           "value": "com10",
           "enable": 1
       },
       {
           "name": "DEBUG",
           "value": "com11",
           "enable": 1
       }
    ],
   "userParameters": [
       {
           "paramId": 4,
           "name": "lever arm x",
           "value": 0.0
       },
       {
           "paramId": 5,
           "name": "lever arm y",
           "value": 0.0
       }
    ]
 }





The user serial port is the serial port connected by the python driver. If the user needs to enable the
data log function or automatically configure user parameters when the python driver is started, first
configure the “initial” field in openrtk.json as shown in Figure above.

Use OpenRTK/OpenIMU python driver operation


	Set the log serial port




When the python driver is started with the “-r” suffix, the log function will be enabled and the data of
the three serial ports of USER, GNSS and DEBUG will be recorded at the same time. The USER serial port
number can be automatically identified by the python driver, but GNSS and DEBUG cannot. The user must
set these two serial port numbers.

Case 1: The GNSS/DEBUG of OpenRTK330 EVK is the USER serial port number plus 1 and 2 respectively.
Just configure the “useDefaultUart” field to 1, and the “uart” field does not work at this time.

[image: ../_images/Fig_27_Micro_USB.png]
Case 2: If the user needs to specify the GNSS/DEBUG serial port number, or does not use the GNSS/DEBUG
serial port (the user has not made a hardware connection), the “useDefaultUart” needs to be configured
to 0, and the “uart” field is valid at this time, the GNSS/DEBUG When “enable” is 1, it means to use
this serial port. When not in use, configure it to 0. “Value” should be the serial port name of the
serial port in the system. For example: under windos, open the device manager, as shown in Figure above,
find the connected GNSS and DEBUG serial numbers are COM10 and COM11 respectively, the configuration
should be as follows:

"uart":[
           {
               "name": "GNSS",
               "value": "com10",
               "enable": 1
           },
           {
               "name": "DEBUG",
               "value": "com11",
               "enable": 1
           }
       ],






	Setting paracmeters




When starting the python driver with the “-s” suffix, the “userParameters” parameters can be automatically
configured to the OpenRTK device and saved after power off. Find “userParameters” as shown in Figure 2,
and configure fields for user parameters. All configurable fields are in “userConfiguration”, except for
“Data CRC” and “Data Size” whose paramId is 0 or 1 are not configurable, the others can be added to
“userParameters”. Among them, “paramId” and “value” are mandatory fields, the value of paramId must be
consistent with that in “userConfiguration”, and the type of value must be consistent with “type”.

For example: to configure Ethernet and NTRIP services, the following configuration is required, where the
Ethnet mode value is 1 to use static IP mode, and the value is 0 to use DHCP mode.

"userParameters": [
    {
        "paramId": 13,
        "name": "Ethnet mode",
        "value": 1
    },
    {
        "paramId": 14,
        "name": "STATIC IP",
        "value": "192.168.137.110"
    },
    {
        "paramId": 15,
        "name": "NETMASK",
        "value": "255.255.255.0"
    },
    {
        "paramId": 16,
        "name": "GATEWAY",
        "value": "192.168.137.1"
    },
    {
        "paramId": 18,
        "name": "IP",
        "value": "203.107.45.154"
    },
    {
        "paramId": 19,
        "name": "PORT",
        "value": 8001
    },
    {
        "paramId": 20,
        "name": "MOUNT POINT",
        "value": " RTCM32_GGB"
    },
    {
        "paramId": 21,
        "name": "USER NAME",
        "value": "username"
    },
    {
        "paramId": 22,
        "name": "PASSWORD",
        "value": "password"
    }
]








ST GNSS UART1


	Pin: ST_UART1_TX(#59), ST_UART1_RX(#60)


	Default configuration






	Baud tare: 460800 b/s


	Stop bit: 1


	Data bits: 8


	Check Digit: None








	Data formation: RTCM3 format


	Main function: Send raw data of GNSS receiver satellite signal






DEBUG UART1


	Pin: DEBUG_TX(#51), DEBUG_RX(#52)


	Default configuration






	Baud tare: 460800 b/s


	Stop bit: 1


	Data bits: 8


	Check Digit: None








	Data formation: ASSIC format, “P1” packet format


	Main function:






	Send “p1” packet data (more detailed than user serial port data), not sending by default


	Get user parameters (only basic parameters are included, user serial port can get all parameters)


	Control “p1” packet data on or off









ST UART PROG


	Pin: ST_UART_PROG_TX(#49), ST_UART1_PROG_RX(#50)


	Default configuration






	Baud tare: 460800 b/s


	Stop bit: 1


	Data bits: 8


	Check Digit: None








	Main function: ST GNSS chip firmware download interface (SDK download port)






BT UART


	Pin: BT_UART2_RX(#35), BT_UART2_TX(#36)


	Default configuration






	Baud tare: 460800 b/s


	Stop bit: 1


	Data bits: 8


	Check Digit: None








	Main function






	Receive RTCM3 data from GNSS base station


	Send module position data in NMEA GPGGA format









SPI Pin Definition


	Pin: USER_MOSI(#29), USER_SCK(#30), USER_NSS(#31), USER_MISO(#32)


	Default configuration






	Frame format: Motorola


	Data length: 8 bits


	First bit: 1


	CPOL: High


	CPHA: 2Edge








	Main function






	Send “p1” data, “p1” packet format (see 4.3 for details)









CAN Pin Definition


	Pin: CAN_RX(#53), CAN_TX(#54)


	Default configuration






	ECU address: 128 (automatically match, add 1 to this address, maximum 247)


	Baud rate: 250K








	Data format: can communication protocol, which can be divided into the following 3 categories
according to functions:






	Setting parameters: the user sends a setting parameter command, the module does not return


	Get parameters: the user sends a get parameter command, the content of the command is the PF number
and PS number of the data required by the user, and the module returns the corresponding data frame


	Data packet: The module continuously sends data packets according to the data type and frequency
configured by the user








	Main function






	Support SAE J1939 protocol


	Configure CAN interface parameters


	Send user data packet









RMII Pin Definition


	Pin: ETH_RESET(#8), RMII_TXD0(#9), RMII_TXD1(#10), RMII_TX_EN(#11), VDD_CORE(#12), VIN(#13), RMII_RXD1(#14),




ETH_MDC(#15),RMII_RXD0(#16),RMII_REF_CLK(#17),ETH_MDIO(#18),RMII_CRS_DV(#19)


	Default configuration






	DHCP mode


	Hostname: openrtk,  you can access the Web Interface through http://openrtk in the LAN








	Main function






	Support static IP mode and DHCP mode


	Access to Web Interface configuration parameters (including Ethernet, NTRIP, etc.)


	Establish NTRIP CLIENT to pull base rtcm3 data











          

      

      

    

  

    
      
          
            
  
The OpenRTK330LI EVK


Contents


	1. Introduction


	2. OpenRTK330 EVB







1. Introduction


The OpenRTK evaluation kit (EVK) is a hardware platform to evaluate the
OpenRTK330 GNSS RTK/INS integrated positioning system and develop various
applications based on this platform. Supported by the online Aceinna Navigation
Studio the kit provides easy access to the features of OpenRTK330 and
explains how to integrate the device in a custom design. The OpenRTK
EVK is shown below after unpacking.

[image: _images/EvalKit.png]



where



	1: ST-Link debugger


	2: Multi-Constellation Multi-frequency GNSS antenna


	3: Micro-USB cable


	4: OpenRTK330 Evaluation Board (EVB) with metal flat mounting board


	5: 12-V DC adapter with 5.5 x 2.1 mm power jack









2. OpenRTK330 EVB

An OpenRTK330 Evaluation board is shown below in detail



[image: _images/EvalBoard.png]




where



	1: OpenRTK330 GNSS/IMU integrated module


	2: GNSS antenna SMA interface


	3: Espressif ESP32 bluetooth module


	4: SWD/JTAG connector, 20-pin


	5: Extension connector with 6-pin interfaces from left to right



	GND


	Not Connected


	Not Connected


	Connects to pin #56 “USER_UART2_TX” of the OpenRTK330 module


	Connects to pin #55 “USER_UART2_RX” of the OpenRTK330 module


	1PPS outlet












	
	Extension connector with 6-pin SPI interfaces from left to right






	Connects to pin #29 “USER_MOSI” of the OpenRTK330 module


	Connects to pin #30 “USER_SCK” of the OpenRTK330 module


	Connects to pin #31 “USER_NSS” of the OpenRTK330 module


	Connects to pin #32 “USER_MISO” of the OpenRTK330 module


	Connects to pin #39 “USER_DRDY” of the OpenRTK330 module


	GND









	
	Boot mode switch with two positions (A and B)






	
	RJ45 jack for Ethernet interface






	
	Micro-USB port






	
	CAN interface






	
	Power jack for 12-v adapter






	
	EVB working status LEDs from left to right





	Yellow: ST GNSS chipset is powered on and working properly


	Red: valid GNSS base station data receiving


	Green: valid GNSS signal receiving


















          

      

      

    

  

    
      
          
            
  
EVB Mechanical Drawing

The following mechanical drawing shows the EVB dimension (in mm) and the position of IMU navigation center. The IMU navigation center is fixed to the left-bottom corner of the OpenRTK330LI module on the EVB. User is recommended to measure the level arm from the GNSS antenna phase center to the IMU Navigation center as accurate as possible.


[image: ../_images/EVB_IMU_Center_dimension.png]



The following mechnical drawing shows the dimension (in mm) of the mounting plate for the OpenRTK330LI EVB:

[image: ../_images/8550-3021-01_EVK_OpenRTK330LI.png]

Note

Use the browser’s back button to return to this page.






          

      

      

    

  

    
      
          
            
  
EVB Schematic

[image: ../_images/EVB_1.png]
[image: ../_images/EVB_2.png]
[image: ../_images/EVB_3.png]
[image: ../_images/EVB_4.png]
[image: ../_images/EVB_5.png]
[image: ../_images/EVB_6.png]
[image: ../_images/EVB_7.png]
Schematic download link




          

      

      

    

  

    
      
          
            
  
ACEINNA protocol data format definition














	Start 1

	Start 2

	Frame type 1

	Frame type 2

	Data length 1

	Data content

	Check 1

	Check 2









Description:



	Start: Each frame of data starts with this, 2 bytes: 0x55 0x55.


	Frame type: 2 bytes, high byte first.


	Data length: 1 byte, refers to the byte length of the data content.


	Data content: maximum 255 bytes.


	Check: crc16 check, 2 bytes, low byte first, bytes from the beginning of the “Frame type” to the end of the “Data content” are included in the check calculation, and the check algorithm C code is as follows:







uint16_t CalculateCRC (uint8_t *buf, uint16_t  length)
{
   uint16_t crc = 0x1D0F;

   for (int i=0; i < length; i++) {
       crc ^= buf[i] << 8;
       for (int j=0; j<8; j++) {
           if (crc & 0x8000) {
               crc = (crc << 1) ^ 0x1021;
           }
           else {
               crc = crc << 1;
           }
       }
   }

   return ((crc << 8 ) & 0xFF00) | ((crc >> 8) & 0xFF);
}







USER UART Data Packet


Get the hardware version number







Get the software version number







Get user parameters















	Frame type

	“gA”



	Description

	Obtain all user parameters.



	Request frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x70 0x41

	0

	None

	CRC_L  CRC_H



	Return frame

	Start

	Frame type

	Data length

	Data content

	Check



	0x55 0x55

	0x70 0x41

	
	see below

	CRC_L  CRC_H



	Data content:



	Offset

	Variable type

	Name

	Unit

	Description



	0

	uint16

	dataCRC

	
	check: CRC16 check of all parameters,
including length



	2

	uint16

	dataSize

	
	length: length of all parameters,
including length and parity



	4

	char * 2

	userPacketType[2]

	
	UART data: currently only “s1”



	6

	uint16

	userPacketRate

	Hz

	UART data frequency



	8

	float

	leverArmBx

	m

	lever arm x, lever arm y, lever arm z:
the offset from the IMU navigation
center to the GNSS antenna phase center



	12

	float

	leverArmBy

	m



	16

	float

	leverArmBz

	m



	20

	float

	pointOfInterestBx

	m

	User lever arm x, user lever arm also y
, user lever arm z: the offset from the
IMU navigation center to the
user-defined point.



	24

	float

	pointOfInterestBy

	m



	28

	float

	pointOfInterestBz

	m



	32

	float

	rotationRbvx

	deg

	Rotation x, rotation y, rotation z: the
rotation angle from the IMU coordinate
system to the vehicle coordinate system
.



	36

	float

	rotationRbvy

	deg



	40

	float

	rotationRbvz

	deg



	44

	uint8

	ethMode

	
	Ethernet mode:   0: DHCP   1: static IP



	45

	uint8 * 4

	staticIp[4]

	
	Static IP: ipv4



	49

	uint8 * 4

	netmask[4]

	
	subnet mask



	53

	uint8 * 4

	gateway[4]

	
	gateway



	57

	uint8 * 6

	mac[6]

	
	Mac address



	63

	char * 23

	ip[23]

	
	NTRIP service IP: it can be an IP
address or a domain name



	86

	uint16

	port

	
	NTRIP port



	88

	char * 20

	mountPoint[20]

	
	NTRIP mount point: the software
defaults to adding “/” in front



	108

	char * 16

	username[16]

	
	NTRIP username



	124

	char * 24

	password[24]

	
	NTRIP password



	148

	uint16

	can_ecu_address

	
	Can password



	150

	uint16

	can_baudrate

	
	Can baud rate: 250K, 500K, 1000K



	152

	uint16

	can_packet_type

	
	Can packet



	154

	uint16

	can_packet_rate

	
	Can data frequency: 50Hz, 100Hz, 200Hz



	156

	uint16

	can_termresistor

	
	Can terminal resistance: 0: Disable 1:
Enable



	158

	uint16

	can_baudrate_detect

	
	Can automatic baud rate: 0: Disable 1:
Enable











Set user parameters







Save user parameters












	Frame type

	“sC”



	Description

	Save user parameters



	Request frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x73 0x43

	0

	None

	CRC_L  CRC_H



	Return frame

	Start

	Frame type

	Data length

	Data content

	Check



	0x55 0x55

	0x73 0x43

	0

	None

	CRC_L  CRC_H



	If saving is successful, return as it is; if saving fails, return NAK frame











Failed frame












	Frame type

	0x15 0x15



	Description

	NAK frame



	Request frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x15 0x15

	2

	Failed frame type

	CRC_L  CRC_H











IMU raw data packet















	Frame type

	“s1”



	Description

	IMU raw data



	Data Frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x73 0x31

	36

	see below

	CRC_L  CRC_H



	Data content:



	Offset

	Variable type

	Name

	Unit

	Description



	0

	uint32

	week

	
	GPS week, seconds within GPS week: GPS
time



	4

	double

	timeOfWeek

	s



	12

	float * 3

	accel_g[3]

	m/s^2

	accelerometer(x,y,z)



	24

	float * 3

	rate_dps[3]

	deg/s

	gyroscope (x,y,z)











Combined solution PVA packet















	Frame type

	“pS”



	Description

	position, speed, attitude



	Data Frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x70 0x53

	124

	see below

	CRC_L  CRC_H



	Data content:



	Offset

	Variable type

	Name

	Unit

	Description



	0

	uint32

	week

	
	GPS week, seconds within GPS week: GPS
time, accurate to milliseconds within a
week



	4

	double

	timeOfWeek

	s



	12

	uint32

	positionMode

	
	positionMode Positioning mode:0:Invalid
1: Single point solution 4: Fixed
solution 5: Floating point solution



	16

	double

	latitude

	deg

	latitude



	24

	double

	longitude

	deg

	longitude



	32

	double

	height

	m

	height



	40

	uint32

	numberOfSVs

	
	Number of satellites



	44

	float

	hdop

	
	horizontal component precision factor



	48

	float

	differential_age

	s

	differential time difference



	52

	uint32

	vel_mode

	
	Speed ​​mode: 0: Invalid 1: Doppler
2: Pure INS calculation



	56

	uint32

	insStatus

	
	Inertial navigation status: 0: invalid
1: INS is in alignment 2: INS solution
is not reliable 3: INS solution is good
4: Pure INS solution (no GNSS update)



	60

	uint32

	insPositionType

	
	Inertial navigation positioning type:0:
Invalid 1: Pseudo-range single point
positioning/INS combination 4:RTK fixed
solution/IN combination 5:RTK floating
point



	64

	float

	north_vel

	m/s

	speed (north)



	68

	float

	east_vel

	m/s

	speed (east)



	72

	float

	up_vel

	m/s

	speed (up)



	76

	float

	roll

	deg

	roll angle



	80

	float

	pitch

	deg

	pitch angle



	84

	float

	heading

	deg

	yaw angle



	88

	float

	latitude_std

	
	Latitude standard deviation



	92

	float

	longitude_std

	
	Longitude standard deviation



	96

	float

	height_std

	
	Height standard deviation



	100

	float

	north_vel_std

	
	Speed ​​(north) standard deviation



	104

	float

	east_vel_std

	
	Speed ​​(East) standard deviation



	108

	float

	up_vel_std

	
	Speed ​​(up) standard deviation



	112

	float

	roll_std

	
	roll angle standard deviation



	116

	float

	pitch_std

	
	pitch angle standard deviation



	120

	float

	heading_std

	
	yaw angle standard deviation











Satellite information for positioning solution















	Frame type

	“sK”



	Description

	Satellite information



	Data Frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x73 0x4B

	21*n

	see below

	CRC_L  CRC_H



	Data content: a frame of data contains multiple satellite information n



	Offset

	Variable type

	Name

	Unit

	Description



	0+n*21

	double

	timeOfWeek

	s

	GPS week, seconds within GPS week:
accurate to milliseconds within a week



	8+n*21

	uint8

	satelliteId

	
	atellite number



	9+n*21

	uint8

	systemId

	
	system number: 0: GPS 1: GLONASS 2:
Galileo 3: QZSS 4: BeiDou 5: SBAS



	10+n*21

	uint8

	antennaId

	
	antenna number: 0: Main antenna 1:
Secondary antenna



	11+n*21

	uint8

	l1cn0

	
	S/N ratio 1: L1



	12+n*21

	uint8

	l2cn0

	
	S/N ratio 2: L2 / L5



	13+n*21

	float

	azimuth

	deg

	azimuth



	17+n*21

	float

	elevation

	m

	height













          

      

      

    

  

    
      
          
            
  
DEBUG UART Data Packet


Protocol packet format

Debug uart port data package (P1 package) includes four types of data: “imu”, “gnss”, “vel” and “ins”.
Each piece of data contains three parts: packet header, content and check code.










	packet header



	Offset

	Variable type

	Name

	Description



	0

	uint8

	sync1

	sync 1: 0xAA



	1

	uint8

	sync2

	sync 2: 0x44



	2

	uint8

	sync3

	sync 3: 0x12



	3

	uint8

	header_length

	Length of packet header: 0x1C



	4

	uint16

	message_id

	data id: 268-“imu” 42-“gnss” 99-“vel”
507-“ins”



	6

	uint8

	message_type

	N/A



	7

	uint8

	port_address

	N/A



	8

	uint16

	message_length

	Data length: not including header and
check code



	10

	uint16

	sequence

	N/A



	12

	uint8

	idle

	N/A



	13

	uint8

	time_status

	N/A



	14

	uint16

	gps_week

	GPS week



	16

	uint32

	gps_millisecs

	GPS seconds within a week: unit: ms



	20

	uint32

	status

	N/A



	24

	uint16

	Reserved

	N/A



	26

	uint16

	version

	N/A






Check code:




#define CRC32_POLYNOMIAL 0xEDB88320L

static unsigned long CRC32Value(int i)
{
    int j;
    unsigned long ulCRC;
    ulCRC = i;
    for (j = 8; j > 0; j--)
    {
        if (ulCRC & 1)
            ulCRC = (ulCRC >> 1) ^ CRC32_POLYNOMIAL;
        else
            ulCRC >>= 1;
    }
    return ulCRC;
}
unsigned long CalculateBlockCRC32(unsigned long ulCount,
                                  unsigned char *ucBuffer)
{
    unsigned long ulTemp1, ulTemp2;
    unsigned long ulCRC = 0;
    while (ulCount-- != 0)
    {
        ulTemp1 = (ulCRC >> 8) & 0x00FFFFFFL;
        ulTemp2 = CRC32Value(((int)ulCRC ^ *ucBuffer++) & 0xff);
        ulCRC = ulTemp1 ^ ulTemp2;
    }
    return (ulCRC);
}







Original IMU packet










	“imu”



	Offset

	Variable type

	Name

	Description



	0

	OpenRTKPacketHeader

	header

	header



	28

	uint32

	gps_week

	GPS week



	32

	double

	gps_millisecs

	GPS seconds within a week (ms)



	40

	uint32

	imuStatus

	N/A



	44

	float

	z_acceleration

	Accelerometer data on z-axis, y-axis,
x-axis (g)



	48

	float

	y_acceleration



	52

	float

	x_acceleration



	56

	float

	z_gyro_rate

	Gyroscope data on z-axis, y-axis,
x-axis (rad/s)



	60

	float

	y_gyro_rate_neg



	64

	float

	x_gyro_rate



	68

	int8 * 4

	crc[4]

	check code











GNSS position solution










	“gnss”



	Offset

	Variable type

	Name

	Description



	0

	OpenRTKPacketHeader

	header

	header



	28

	uint32

	solution_status

	N/A



	32

	uint32

	position_type

	Positioning mode: 0: Invalid 1: Single
point solution 4: Fixed solution
5: Floating point solution



	36

	double

	latitude

	longitude (deg)



	44

	double

	longitude

	Latitude (deg)



	52

	double

	height

	Altitude (m)



	60

	float

	undulation

	N/A



	64

	uint32

	datum_id

	Geodetic datum coordinate system



	68

	float

	longitude_standard_deviation

	Longitude standard deviation



	72

	float

	latitude_standard_deviation

	Latitude standard deviation



	76

	float

	height_standard_deviation

	height standard deviation



	80

	int8 * 4

	base_station_id[4]

	N/A



	84

	float

	differential_age

	N/A



	88

	float

	solution_age

	


	92

	uint8

	number_of_satellites

	The number of satellites used in the
positioning solution



	93

	uint8

	number_of_satellites_in_solution

	N/A



	94

	uint8

	num_gps_plus_glonass_l1

	N/A



	95

	uint8

	num_gps_plus_glonass_l2

	N/A



	96

	uint8

	reserved

	N/A



	97

	uint8

	extended_solution_status

	N/A



	98

	uint8

	reserved2

	N/A



	99

	uint8

	signals_used_mask

	N/A



	100

	int8 * 4

	crc[4]

	check code











GNSS velocity solution










	“vel”



	Offset

	Variable type

	Name

	Description



	0

	OpenRTKPacketHeader

	header

	header



	28

	uint32

	solution_status

	N/A



	32

	uint32

	position_type

	N/A



	36

	float

	latency

	N/A



	40

	float

	age

	N/A



	44

	double

	horizontal_speed

	Horizontal speed (m/s)



	52

	double

	track_over_ground

	Ground speed (m/s)



	60

	double

	vertical_speed

	Vertical speed (m/s)



	68

	float

	reserved

	N/A



	72

	int8 * 4

	crc[4]

	check code











INS position, velocity and attitude solution










	“ins”



	Offset

	Variable type

	Name

	Description



	0

	OpenRTKPacketHeader

	header

	header



	28

	uint32

	gps_week

	GPS week



	32

	double

	gps_millisecs

	GPS seconds within a week (ms)



	40

	double

	latitude

	Latitude (deg)



	48

	double

	longitude

	Longitude (deg)



	56

	double

	height

	Height (m)



	64

	double

	north_velocity

	Velocity (north) (m/s)



	72

	double

	east_velocity

	Velocity (East) (m/s)



	80

	double

	up_velocity

	Velocity (up) (m/s)



	88

	double

	roll

	Roll angle (deg)



	96

	double

	pitch

	Pitch angle (deg)



	104

	double

	azimuth

	Yaw angle (deg)



	112

	int32

	status

	Combined solution status: 0: invalid 1:
INS alignment ongoing 2: INS solution
is unreliable 3: INS solution is good 4
:INS free(no GNSS update) 5: Estimating
installation angle 6: Completed estima
installation angle estimation



	116

	int8 * 4

	crc[4]

	check code












Port command


Get module configuration information

Command: get configuration\r\n

Return: string in json format

{
       "openrtk configuration":
   {
               "Product Name":         "",
               "Product PN":           "",
               "Product SN":           "",
               "Version":                  "",
               "userPacketType":       "s1",
               "userPacketRate":       100,
               "leverArmBx":           0.0,
               "leverArmBy":           0.0,
               "leverArmBz":           0.0,
               "pointOfInterestBx":    0.0,
               "pointOfInterestBy":    0.0,
               "pointOfInterestBz":    0.0,
               "rotationRbvx":         0,
               "rotationRbvy":         0,
               "rotationRbvz":         0
       }
}





At the same time, the module will close the P1 packet output of the DEBUG port.



Enable P1 packet output

Command: log debug on\r\n

Return: N/A, the module will directly output P1 packet data after a delay of 1 second.





          

      

      

    

  

    
      
          
            
  
CAN Interface Data Protocol


CAN port settings


	Save parameters















	Frame type

	Save parameters



	Description

	Save user parameters, no loss after power failure



	Set frame

	PF

	ps

	PGN

	Data content length



	255

	81

	65361

	3



	Data content:



	Byte

	Description

	Value



	0

	Frame type

	0: Request frame 1: Reply frame



	1

	Destination address

	


	2

	Reply frame is valid

	0: Save failed 1: Save successfully










	Set CAN packet type















	Frame type

	Set CAN data packet type



	Description

	Set the type of CAN data sent cyclically



	Set frame

	PF

	PS

	PGN

	Data content length



	255

	86

	65366

	3



	Data content:



	Byte

	Description

	Value



	0

	destination address

	


	1

	Data packet type (low byte)

	0x01-accelerometer   0x02-Gyroscope
0x04-latitude and longitude 0x08-attitude
Note: The package can be sent together, such
as 0x03, both accelerometer and gyroscope



	2

	Packet type (high byte)










	Set CAN data frequency















	Frame type

	Set CAN data frequency



	Description

	Set the frequency of CAN data sent cyclically



	Set frame

	PF

	PS

	PGN

	Data content length



	255

	85

	65365

	2



	Data content:



	Byte

	Description

	Value



	0

	destination address

	


	1

	Data frequency

	0-Quiet Mode  1-100(default)  2-50  4-25 5-20
10(0x0a)-10  20(0x14)-5  25(0x19)-4 50(0x32)-2











Get parameters through CAN port












	Frame type

	Get parameters



	Description

	Get specified parameters



	Get frame

	PF

	PS

	PGN

	Data content length



	234

	255

	60159

	3



	Data content:



	Byte

	Description

	Value



	0

	N/A

	


	1

	Parameter PF

	PF and PS of specific parameters, see below 2
parameter PS



	2

	Parameter PS










	Get the software version number















	Frame type

	Get software version number



	Description

	Get specified parameters



	Get frame

	PF

	PS

	PGN

	Data content length



	254

	218

	65242

	5



	Data content:



	Byte

	Description

	Value



	0

	Major Version Number

	


	1

	Minor Version Number

	


	2

	Patch Number

	


	3

	Stage Number

	


	4

	Build Number

	









	Get ECU ID
















	Frame type

	Get ECU ID



	Description

	Get specified parameters



	Get frame

	PF

	PS

	PGN

	Data content length



	253

	197

	64965

	8



	Data content:



	Bits

	Description

	Value



	bits 0

	Arbitrary Address

	Arbitrary Address



	bits 1:3

	Industry Group

	Industry Group



	bits 4:7

	Vehicle System Instance

	Vehicle System Instance



	bits 8:14

	System Bits

	System Bits Vehicle system domain



	bits 15

	Reserved

	Reserved Reserved



	bits 16:23

	Function Bits

	Function Bits Function domain



	bits 24:28

	Function Instance

	Function Instance



	bits 29:31

	ECU Bits

	ECU Bits ECU instance domain



	bits 32:42

	Manufacturer code

	Manufacturer code Manufacturer code field



	bits 43:63

	ID bits

	ID bits number










	Get CAN packet type















	Frame type

	Get CAN data packet type



	Description

	


	Get frame

	PF

	PS

	PGN

	Data content length



	225

	86

	65366

	3



	Data content:



	Byte

	Description

	Value



	0

	destination address

	


	1

	Packet type (low byte)

	


	2

	Packet type (high byte)

	









	Get CAN data frequency















	Frame type

	Get CAN data frequency



	Description

	


	Get frame

	PF

	PS

	PGN

	Data content length



	255

	85

	65365

	2



	Data content:



	Byte

	Description

	Value



	0

	destination address

	


	1

	Data frequency

	









	Latitude and longitude position















	Frame type

	Latitude and longitude position



	Description

	


	Data frame

	PF

	PS

	PGN

	Data content length



	254

	243

	65267

	8



	Data content:



	Byte

	Description

	Value



	0:3

	Latitude

	0.0000001 deg/bit



	4:7

	Longitude

	0.0000001 deg/bit










	Attitude















	Frame type

	Attitude



	Description

	


	Data frame

	PF

	PS

	PGN

	Data content length



	241

	25

	127257

	8



	Data content:



	Byte

	Description

	Value



	0

	SID

	


	1:2

	yaw angle

	0.0001 rad/bit



	3:4

	pitch angle

	0.0001 rad/bit



	5:6

	roll angle

	0.0001 rad/bit



	7

	Latitude

	









	Accelerometer data

















	Frame type

	Accelerometer data



	Description

	


	Data frame

	PF

	PS

	PGN

	Data content length



	240

	45

	61485

	8



	Data content:



	Byte

	Description

	Value

	


	0:1

	Accelerometer x axis

	0.01 m/s**2/bit

	-320 m/s**2



	2:3

	Accelerometer y axis

	0.01 m/s**2/bit

	-320 m/s**2



	4:5

	Accelerometer z axis

	0.01 m/s**2/bit

	-320 m/s**2



	6:7

	reserved

	
	









	Gyroscope data

















	Frame type

	Gyroscope data



	Description

	


	Data frame

	PF

	PS

	PGN

	Data content length



	240

	42

	61482

	8



	Data content:



	Byte

	Description

	Value

	


	0:1

	gyroscope x axis

	1/128 deg/second/bit

	-250 deg



	2:3

	gyroscope y axis

	1/128 deg/second/bit

	-250 deg



	4:5

	gyroscope z axis

	1/128 deg/second/bit

	-250 deg



	6:7

	reserved

	
	












          

      

      

    

  

    
      
          
            
  
NMEA

$GNGGA

Format: $GNGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,< 11>,<12>*xx<CR><LF>
E.g:
$GNGGA,072446.00,3130.5226316,N,12024.0937010,E,4,27,0.5,31.924,M,0.000,M,2.0,*44
Field explanation:



	<0> $GNGGA


	<1> UTC time, the format is hhmmss.sss


	<2> Latitude, the format is ddmm.mmmmmmm


	<3> Latitude hemisphere, N or S (north latitude or south latitude)


	<4> Longitude, the format is dddmm.mmmmmmm


	<5> Longitude hemisphere, E or W (east longitude or west longitude)


	<6> GNSS positioning status: 0 not positioned, 1 single point positioning, 2 differential GPS fixed solution, 4 fixed solution, 5 floating point solution


	<7> Number of satellites used


	<8> HDOP level precision factor


	<9> Altitude


	<10> The height of the earth ellipsoid relative to the geoid


	<11> Differential time


	<12> Differential reference base station label


	* Statement end marker


	xx XOR check value of all bytes starting from $ to *


	<CR> Carriage return, end tag


	<LF> line feed, end tag







$GNRMC

Format: $GNRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,< 12>*xx<CR><LF>
E.g:
$GNRMC,072446.00,A,3130.5226316,N,12024.0937010,E,0.01,0.00,040620,0.0,E,D*3D
Field explanation:



	<0> $GNRMC


	<1> UTC time, the format is hhmmss.sss


	<2> Positioning status, A=effective positioning, V=invalid positioning


	<3> Latitude, the format is ddmm.mmmmmmm


	<4> Latitude hemisphere, N or S (north latitude or south latitude)


	<5> Longitude, the format is dddmm.mmmmmmm


	<6> Longitude hemisphere, E or W (east longitude or west longitude)


	<7> Ground speed


	<8> Ground heading (take true north as the reference datum)


	<9> UTC date, the format is ddmmyy (day, month, year)


	<10> Magnetic declination (000.0~180.0 degrees)


	<11> Magnetic declination direction, E (east) or W (west)


	<12> Mode indication (A=autonomous positioning, D=differential, E=estimation, N=invalid data)


	* Statement end marker


	XX XOR check value of all bytes starting from $ to *


	<CR> Carriage return, end tag


	<LF> line feed, end tag







$GNGSA

format:
$GNGSA,<1>,<2>,<3>,<3>,,,,,<3>,<3>,<3>,<4>,<5>,<6>,<7> *xx<CR><LF>
E.g:
$GNGSA,A,3,03,06,09,17,19,23,28,,,,,,3.0,1.5,2.6,1*25
$GNGSA,A,3,65,66,67,81,82,88,,,,,,,2.4,1.3,2.1,2*36
$GNGSA,A,3,02,05,09,15,27,,,,,,,,,10.8,2.7,10.4,3*3A
$GNGSA,A,3,01,02,07,08,10,13,27,28,32,33,37,,2.1,1.0,1.9,5*33
Field explanation:



	<1> Mode: M=Manual, A=Auto


	<2> Positioning type: 1=not positioned, 2=two-dimensional positioning, 3=three-dimensional positioning


	<3> PRN code (Pseudo Random Noise Code), channels 1 to 12, up to 12


	<4> PDOP position precision factor


	<5> HDOP level precision factor


	<6> VDOP vertical precision factor


	<7> GNSS system ID: 1(GPS), 2(GLONASS), 3(GALILEO), 5(BEIDOU)


	*  Statement end marker


	xx XOR check value of all bytes starting from $ to *


	<CR> Carriage return, end tag


	<LF> line feed, end tag










          

      

      

    

  

    
      
          
            
  
Overview


What is RTKlib

RTKLIB is an open source program package for standard and precise positioning with GNSS (global
navigation satellite system). It supports standard and precise positioning algorithms with GPS,
GLONASS, Galileo, QZSS, BeiDou and SBAS.



RTKlib tools supporting Aceinna Format

RTKlib tools supporting Aceinna Format is s special version of RTKlib which supports aceinna data
format to display data, decode data, save data, and also plotting and RTK processing.

RTKLIB_with Aceinna format binary version:
https://github.com/Aceinna/rtklib_bin_aceinna

RTKLIB_with Aceinna format_source version:
https://github.com/Aceinna/rtklib_aceinna



Aceinna data format

Aceinna-user and aceinna-raw are two data formats exported from Openrtk330LI; They are output from
serial port 1 and serial port 3 of Openrtk330LI; Aceinna-user data include imu raw data, rtk and ins
solution; Aceinna-raw includes rover, base RTCM data and imu raw data.


Aceinna-User Format

Data format definition













	Start 1

	Start 2

	Frame type 1

	Frame type 2

	Data length 1

	Data content

	Check 1

	Check 2






Description


	Start: Each frame of data starts with this, 2 bytes: 0x55 0x55.






	Frame type: 2 bytes, high byte first.


	Data length: 1 byte, refers to the byte length of the data content.


	Data content: maximum 255 bytes.


	Check: crc16 check, 2 bytes, low byte first, bytes from the beginning of the “Frame type” to the end of the “Data content” are included in the check calculation, and the check algorithm C code is as follows:







uint16_t CalculateCRC (uint8_t *buf, uint16_t  length)
{
   uint16_t crc = 0x1D0F;

   for (int i=0; i < length; i++) {
       crc ^= buf[i] << 8;
       for (int j=0; j<8; j++) {
           if (crc & 0x8000) {
               crc = (crc << 1) ^ 0x1021;
           }
           else {
               crc = crc << 1;
           }
       }
   }

   return ((crc << 8 ) & 0xFF00) | ((crc >> 8) & 0xFF);
}





Frame types

Aceinna-user has five types of data, namely “S1”, “G1”, “I1”, “O1” and “Y1”; For the specific structure of each type of format, please refer to the openrtk documentation：
https://openrtk.readthedocs.io/en/latest/communication_port/User_uart.html#imu-raw-data-packet



Aceinna-raw Format

Aceianna-raw is composed of four format types of $GPGGA，$GPIMU，$GPROV，$GPREF;

$GPGGA

$GPGGA is the standard NMEA GGA format.

$GPIMU

$GPIMU is the IMU information in NMEA format.














	$GPIMU

	time of week

	accel-x

	accel-y

	accel-z

	gyro-x

	gyro-y

	gyro-z









$GPROV

$GPROV contains the RTCM package from Rover.











	$GPROV

	time of week

	left length

	RTCM bin

	








$GPREF

$GPREF contains the RTCM package from Base.











	$GPRRF

	time of week

	left length

	RTCM bin

	













          

      

      

    

  

    
      
          
            
  
Instructions


Use strsvr to decode aceinna-user data

Use strsvr to decode aceinna-user data format. Decode aceinna format data and display information in monitor
dialog and save it in files.


Set input stream parameter

Select serial for (0) input. Click “opt” button to open the Serial Options dialog.


[image: ../_images/serial_options.png]



Select the first serial port in the serial Options dialog.


[image: ../_images/first_serial.png]



Bitrate is selected as 460800.


[image: ../_images/bitrate.png]





Set output files path

Select the path to save the file. For example: C:/Users/zhangchen/Desktop/rtklog/.


[image: ../_images/path.png]





Show the data in monitor dialog and save file

Click the small square button to open Input Stream Monitor dialog.


[image: ../_images/small_square_button.png]



Select the aceinna-user format.


[image: ../_images/aceinna_user.png]



Click “start” button to start receiving data.


[image: ../_images/start_button.png]



Strsvr is running.


[image: ../_images/strsvr_running.png]



The data decoding information is showed in monitor dialog.


[image: ../_images/input_stream_monitor.png]



The file is saved in the previous output path.


[image: ../_images/output_path.png]






Use RTKLIBNAVI to decode aceinna-user data

Aceinna-raw data is the result outputfrom OpenRTK330. Using rtklibnavi to connect the first serial port of
openrtk330,  the RTK processing result data can be recognized These data can be displayed by SNR plot, sky map
and GND Trk.


[image: ../_images/displayed.png]




Set input stream parameter

Click the ‘I’ button to open Input Streams dialog.


[image: ../_images/Ibutton.png]



Check (1) Rover in the Input Streams dialog.


[image: ../_images/check_rover.png]



Select “serial” in the type option.


[image: ../_images/select_serial.png]



Click “opt” button to open the Serial Options dialog.


[image: ../_images/opt_button.png]



Select the frist serial port in the serial Options dialog.


[image: ../_images/first_serial2.png]



Bitrate is selected as 460800.


[image: ../_images/bitrate2.png]



Format is selected as Aceinna-raw.


[image: ../_images/aceinna_raw.png]





Set output log files path

Select the path to save the file. For example: C:/Users/zhangchen/Desktop/rtklog/.

Click the ‘L’ button to open Log Streams dialog.


[image: ../_images/Lbutton.png]



Check (6) Rover ,select File type and input the log file paths. Click “OK” button.


[image: ../_images/OKbutton.png]





Start to receive data

Click the “start” button to start receiving the data.


[image: ../_images/start_button2.png]



When receiving the data, the SNR bar is plotted.


[image: ../_images/snr_plot.png]



Click the arrow button to switch view (SNR bar, sky map, positioning coordinates, horizontal error scatter,
position error timeseries in north, east and up).


[image: ../_images/arrow_button.png]



The sky map.


[image: ../_images/sky_map.png]



Both sky map and SNR plot.


[image: ../_images/both_sky_snr.png]



The Gnd Trk.


[image: ../_images/gnd_trk.png]



Click the “Plot” button to open RTKPLOT.


[image: ../_images/rtkplot.png]



The RTKPLOT dialog.


[image: ../_images/rtkplot_dialog.png]



Select the drop-down list to switch views.


[image: ../_images/switch_views.png]



The Position views.


[image: ../_images/position_views.png]



Click “stop” button to stop receiving data.


[image: ../_images/stop_button.png]



The file is saved in the previous output path.


[image: ../_images/output_path2.png]






Use RTKLIBNAVI to decode aceinna-raw data

Aceinna-raw data contains the original data of rover station and base station. Using rtklibnavi to connect the third serial
port of openrtk330, the rover station and the base station information can be read at the same time. These data can be displayed by SNR plot,
sky map, baseline and GND Trk. At the same time, these data can also be used for RTK processing.


[image: ../_images/snr_sat_base_trk.png]




Set input stream parameter

Click the ‘I’ button to open Input Streams dialog.


[image: ../_images/Ibutton2.png]



Check (1) Rover in the Input Streams dialog.


[image: ../_images/check_rover2.png]



Select serial in the type option.


[image: ../_images/select_serial2.png]



Click “opt” button to open the Serial Options dialog.


[image: ../_images/opt_button2.png]



Select the third serial port in the serial Options dialog.


[image: ../_images/third_serial.png]



Bitrate is selected as 460800.


[image: ../_images/bitrate3.png]



Format is selected as Aceinna-raw.


[image: ../_images/aceinna_raw2.png]





RTK processing config

Close the Input Streams dialog and click the “options” button to open the options dialog.


[image: ../_images/options_button.png]



In the options dialog, choose the RTK posting mode option as “kinematic” or “static”.


[image: ../_images/posting_mode.png]





Start to receive data

Click “start” button to start receiving the data.


[image: ../_images/start_button3.png]



When receiving the data, the SNR map of Rover and base according to the data will appear in GUI, and RTK results
will be displayed.


[image: ../_images/displayed2.png]



Click the arrow button to switch view (SNR bar, sky map, positioning coordinates, horizontal error scatter,
position error timeseries in north, east and up).


[image: ../_images/arrow_button2.png]



The sky maps.


[image: ../_images/sky_map2.png]



The baseline.


[image: ../_images/baseline.png]



The Gnd Trk.


[image: ../_images/gnd_trk2.png]



Click “Plot” button to Open RTKPLOT.


[image: ../_images/rtkplot2.png]



The RTKPLOT dialog.


[image: ../_images/rtkplot_dialog2.png]



Select the drop-down list to switch views.


[image: ../_images/switch_views2.png]



The Position views.


[image: ../_images/position_view.png]
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OpenRTK as Base Station

[image: _images/clipboard.png]
Connect openrtk module and serial port, ‘input’ select serial port, fill in the parameters.




          

      

      

    

  

    
      
          
            
  
Aceinna Cloud Server

Aceinna Cloud server includes Aceinna Network, Aceinna Computing Server
and Aceinna Ntrip Caster. Aceinna Cloud server provides high precision
correction data in an open standard format (RTCM) simply by connecting
any GNSS-enabled devices over internet. This correction data are used
on the GNSS device to enhance its position even down to a centimetre
based on RTK technology. The advantages clearly outperform the old and
complicated process of reference station setup and maintenance. Furthermore,
Aceinna Cloud server also supports cloudRTK mode, instead of receiving correction data,
GNSS device transmits observation to Aceinna Cloud server. Aceinna Computing Server
will do RTK for customers and return centimetre-level position.

The following pages cover:


	Aceinna Network Coverage


	API key generation


	Ntrip configuration


	RTK/Cloud RTK










          

      

      

    

  

    
      
          
            
  
OpenRTK330 Module

The Aceinna OpenRTK330 module integrates a ST Teseo V automotive grade
multi-constellation, multi-frequency Global Navigation Satellite System
(GNSS) chipset (supports GPS, GALILEO, GLONASS, Beidou, QZSS and SBAS), a
triple-redundant 6-axis (3-axis accelerometer and 3-axis gyro) MEMS
Inertial Measurement Unit (IMU), and a ST M4 MCU as the processor.
OpenRTK330 module is targeted for commecial applicaiton for the mass
market that requires a reliable, high-precision and yet cost effective
GNSS/INS integrated positioning solution.


	100 Hz GNSS/INS integrated position, velocity and attitude solution


	Integrated tripple redundant 6-axis IMU sensors


	Integrated multi-frequency GNSS chipset


	GPS (L1/L2 or L1/L5), GLONASS (L1/L2), GALILEO (E1/E5), Beidou
(B1I/B2I),QZSS (L1), and SBAS


	RTK/PPP algorithms on-board for up to centimetre accuracy


	UART / SPI / CAN / Ethernet Interfaces





Technical characteristics








	Accuracy 1



	Horizontal Position Accuracy (RMS)



	SPS

	1.2 m CEP



	SBAS

	0.6 m



	DGPS

	0.4 m



	RTK 2

	0.02 m



	10s GNSS Outage

	0.3 m



	Vertical Position Accuracy (RMS)



	SPS

	1.8 m CEP



	RTK

	0.03 m



	10s GNSS Outage

	0.4 m



	Velocity Accuracy (RMS)



	Horizontal

	0.01 m/s



	Vertical

	0.02 m/s



	Heading Accuracy (RMS) 3

	0.5°



	Attitude Accuracy (Roll/Pitch, RMS)

	0.1°



	Operating Limits



	Velocity

	515 m/s



	Acceleration

	8 g



	Angular Rate

	400 °/s



	Temperature Calibration Range

	-40 °C to +85 °C



	Timing



	Time to First Fix 4



	Cold Start 5

	< 60 s



	Warm Start 6

	< 45 s



	Hot Start

	< 11 s



	Signal Re-acquisition

	< 2 s



	RTK Initialization Time

	< 1 min



	INS PVA output rate

	100 Hz



	Sensitivity



	Tracking

	-160 dBm



	Cold Start

	-140 dBm



	Environment



	Operating Temperature (°C)

	-40 to +85



	Non-Operating Temperature (°C)

	-55 to +105



	Vibration

	IEC 60068-2-6 (5g)



	Shock survival

	MIL-STD-810G (40g)



	Electrical



	Input Voltage (VDC)

	2.7 to 5.5 V



	Power Consumption (W)

	1.0 (Typical)



	Digital Interface

	UART, CAN, SPI, Ethernet



	Physical



	Package Type

	50-pin LGA



	Size (mm)

	30 x 30 x



	Weight (gm)

	5






Notes


	1

	Typical values, subject to ionospheric/tropospheric conditions, satellite geometry,
baseline length, multipath and interference effects.



	2

	Add 1ppm of baseline length.



	3

	After dynamic motion initialization.



	4

	Typical values.



	5

	No previous satellite or position information.



	6

	Using ephemeris and last known position.










OpenRTK330 Module Pin Definitions


[image: _images/OpenRTK330LI_pin_n1.png]








	No.

	Name

	Type

	Description



	1

	GND

	P

	Ground



	2

	GND

	P

	Ground



	3

	GND

	P

	Ground



	4

	GND

	P

	Ground



	5

	VBAT

	P

	Reserved



	6

	LED2

	O

	Status2 LED



	7

	LED1

	O

	Status1 LED



	8

	ETH_RESET

	O

	Reset signal of ETH RMII interface



	9

	RMII_TXD0

	O

	Transmit data0 of ETH RMII interface



	10

	RMII_TXD1

	O

	Transmit data1 of ETH RMII interface



	11

	RMII_TX_EN

	O

	Transmit enable of ETH RMII interface



	12

	VDD_CORE

	P

	Reserved



	13

	VIN

	P

	Typical DC3.3V, input voltage DC3.0V~3.6V



	14

	RMII_RXD1

	I

	Receive data1 of ETH RMII interface



	15

	ETH_MDC

	O

	Management interface (MII) clock output



	16

	RMII_RXD0

	I

	Receive data0 of ETH RMII interface



	17

	RMII_REF_CLK

	I

	Clock signal of ETH RMII Interface



	18

	ETH_MDIO

	I/O

	Management interface (MII) data I/O



	19

	RMII_CRS_DV

	O

	Carrier sense/receive data valid output of ETH RMII interface



	20

	GND

	P

	Ground



	21

	GNSS_1PPS

	I

	1PPS signal from external GNSS module



	22

	GNSS_RTK_STAT

	I

	RTK status signal from external GNSS module



	23

	GNSS_RSTn

	O

	Reset signal to external GNSS module



	24

	GNSS_TX

	I

	Receive data from external GNSS module



	25

	GNSS_RX

	O

	Transmit data to external GNSS module



	26

	DEBUG_NRST

	I

	Reset signal of MCU debug interface



	27

	WIFI/BT_RESET

	O

	Rest signal for external WIFI/BT module



	28

	WIFI/BT_BOOT_CTL

	O

	Boot mode select signal for external WIFI/BT module



	29

	USER_MOSI

	I

	SPI interface.  Receive data from master



	30

	USER_SCK

	I

	SPI interface. Clock signal from master



	31

	USER_NSS

	I

	SPI interface. Chip selected signal from master



	32

	USER_MISO

	O

	SPI interface. Transmit data to master



	33

	LED3

	O

	Status3 LED



	34

	ST_BOOT_MODE

	I

	Boot mode control signal for internal ST GNSS chip



	35

	WIFI/BT_UART2_RX

	I

	Receive data from external WiFi/BT module



	36

	WIFI/BT_UART2_TX

	O

	Transmit data to external WiFi/BT module



	37

	CAN_AB

	O

	CAN bus transceiver loopback mode control



	38

	CAN_120R_CTL

	O

	CAN termination resistor control (ON/OFF)



	39

	USER-DRDY

	O

	Data ready signal



	40

	GND

	P

	Ground



	41

	LTE1_TX

	O

	Transmit data to external LTE module 1



	42

	LTE1_RX

	I

	Receive data from external LTE module 1



	43

	LTE1_PWR

	O

	Power control signal for external LTE module 1



	44

	LTE1_RSTn

	O

	Reset signal of external LTE module 1



	45

	LTE2_RSTn

	O

	Reset signal of external LTE module 2



	46

	GND

	P

	Ground



	47

	LTE2_RX

	I

	Receive data from external LTE module 2



	48

	LTE2_TX

	O

	Transmit data to external LTE module 2



	49

	ST_UART_PROG_TX

	O

	Receive data from internal ST GNSS UART2 (GNSS program burning)



	50

	ST_UART_PROG_RX

	I

	Transmit data to internal ST GNSS UART2 (GNSS program burning)



	51

	DEBUG_TX

	O

	Transmit data. DEBUG serial port



	52

	DEBUG_RX

	I

	Receive data. DEBUG serial port



	53

	CAN_RX

	I

	Receive data from CAN bus



	54

	CAN_TX

	O

	Transmit data to CAN bus



	55

	USER_UART1_RX

	I

	Receive data. USER port



	56

	USER_UART1_TX

	O

	Transmit data. USER port



	57

	SWDIO

	I/O

	Data IO of SWD debug interface



	58

	SWCLK

	I

	Clock signal of SWD debug interface



	59

	ST_UART1_TX

	O

	Transmit data from internal ST GNSS UART1 port (debug data)



	60

	ST_UART1_RX

	I

	Receive data to internal ST GNSS UART1 port (debug data)



	61

	1PPS

	O

	1PPS signal



	62

	LTE2_PWR

	O

	Power control signal for external LTE module 2



	63

	LNA_EN

	O

	Control signal of external LNA power



	64

	ANT_EN

	O

	Antenna enable, reserved



	65

	ANT_SENSE

	I

	Antenna sensing detection, reserved



	66

	AGND

	P

	Internal GNSS RF path ground



	67

	ANT_IN

	I

	GNSS antenna signal input



	68

	AGND

	P

	Internal GNSS RF path ground






There are six serial communicatoins ports available on the OpenRTK330 module, including four configurable UART ports, one SPI port and one CAN port.

The default configuration of the four UART ports is listed as follows


	User port



	Pin: USER_UART_RX (#55), USER_UART_TX (#56)


	Default baud rate: 460800 b/s


	Default messages: output INS PVA packet (‘pS’), satellite SNR, elevation and azimuth packet (‘sK’),plus raw IMU data packet (‘s1’)









	GNSS chipset firmware programming port



	Pin: ST_UART_PROG_TX (#49), ST_UART_PROG_RX (#50)


	Default baud rate: 460800 b/s


	Reserved for programming GNSS chipset, not applicable for output









	Debug port



	Pin: DEBUG_TX (#51), DEBUG_RX (#52)


	Default baud rate: 460800 b/s


	Default message: output extended INS PVA packets (‘p1’)









	GNSS Data port



	Pin: ST_UART1_TX (#59), ST_UART1_RX (#60)


	Default baud rate: 460800 b/s


	Default message: output RTCMv3 GNSS data stream (10 Hz)












	Pin: USER_MOSI (#29), USER_SCK (#30), USER_NSS (#31), USER_MISO (#32)


	Default Configuration



	Frame format: Motorola


	Data size: 8 bits


	First bit: MSB first


	CPOL: High


	CPHA: 2Edge












	Pin: CAN_RX (#53), CAN_TX (#54)


	Default message: output SAE J1939 messages











          

      

      

    

  

    
      
          
            
  
STA8100 firmware loader and upgrade with the Teseo-Suite


	The Teseo-Suite should be installed first.


	Get Teseo-Suite Pro v6.2.3 tool from the website: https://www.st.com




Run Teseo-Suit and get a license to active the tool.
Select menu Help>Activate Teseo-Suit Pro>Rquest full version and send email to ST.
You can get a license from ST and Activate the Teseo-Suite.

Push the “Boot Mode Switch” side, and connect USB Cable to PC.
Select menu Tools > T5 X-Loader and run.

T5-X-loader Teseo allows to load boot & firmware. Configuration as below.


	Port Settings:


	Port: define UART port number. The fourth serial port of your OpenRTK330_EVB.


	Loader baud rate: define programming baud rate 115200.






	Option:


	Erase NVM: erase settings of Teseo.


	Restore default product: erase settings of Teseo.


	Variant: Cut2.






	Memory: Choose SQI.


	Binary: Press Binary button to browse your binary file.
START initiates programming. STOP cancels programming sequence.


	Erase only: erase firmware area.


	Program only: load firmware without perform erase (only available if flash is previously erased).


	Destination: Start address of firmware. Modify memory type to get default one.


	Entry point offset: Start address to run program.


	GPIO Reset: Generate a glitch with a period of “Timing” on DTR or RTS. Helpful, in case of recovery procedure.


	Dump memory


	Address: location of first byte to read.


	Size: size of memory to read from ‘address’.






	Set memory


	Address: location of interger to write.


	Data: value of integer to write.












When you configurate all the item above, you can click the “Start” to burn the bootloader and firmware.

The follow figures show the bootloader and firmware burning process.




          

      

      

    

  

    
      
          
            
  
OpenRTK Algorithms

This section develops the equations that form the basis of an Extended Kalman Filter (EKF), which
calculates position, velocity, and orientation of a body in space1.  In a VG, AHRS, or
INS2 application, inertial sensor readings are used to form high data-rate (DR)
estimates of the system states while less frequent or noisier measurements (GPS and inertial
sensors) act as references to correct errors in the system.

In addition to deriving the EKF equations, this description presents a measurement model based on
Euler angles, which result from accelerometers, magnetometers, and GPS readings.  Following that it
describes implementations that result in improved solutions under both static and dynamic
conditions.  Finally, a series of examples illustrate existing VG, AHRS, and INS algorithms.

The algorithm development description is broken up into a series of sections that build upon one
another, as follows:


	Time System


	Coordinates System


	GNSS RTK algorithms


	GNSS RTK/IMU loosely coupled integration








	1

	This discussion presupposes a certain amount of knowledge.  Details related to
differential equations, linear algebra, multi-variable calculus, stochastic
processes, etc. are not described.



	2

	A VG uses rate-sensors and accelerometers to estimate roll and pitch.  An AHRS
incorporates magnetometer readings to the VG to estimate heading.  An INS adds GPS
messages to the VG or AHRS to estimate position and velocity or provide a way to
estimate heading without magnetometers.








          

      

      

    

  

    
      
          
            
  
Firmware Build from Source


Contents


	System Setup


	Import and Build Firmware from Source







System Setup

The following is a list of prerequisite software and hardware stack.


	Operating System Supported


	Windows 10 or 7


	Linux (Ubuntu 14.0 or later)


	MAC OS






	ST-LINK Debugger Driver


	Mac OS - comes with MAC OS


	Windows - download and install from here [http://www.st.com/en/development-tools/st-link-v2.html]


	Ubuntu - as follows


	Clone the github repo on Open Source STLink Tools [https://github.com/texane/stlink] and read the instructions carefully.


	Run the following commands to install ST-LINK V2 driver


# Run from source directory stlink/
$ make Release
$ cd build/Release
$ sudo make install

# Plug ST-LINK/V2 into USB, and check the device is present
$ ls /dev/stlink-v2


















	Visual Studio Code and Aceinna Navigation Studio Extension


	Download and install Visual Studio Code (VS Code) from here [https://code.visualstudio.com]


	Intall “Aceinna Navigation Studio” extenion on VS Code


	Start Visual Studio Code, and on leftmost toolbar find “Extensions” icon and click on it.


	In the text box “Search extensions on Marketplace” type “Aceinna” and hit enter


	Install “Aceinna” Extension and Follow prompts.





[image: _images/AddExtension.png]

The “Aceinna” VS Code extension integrates the PlatformIO [https://platformio.org/] IDE that is a cross-platform new ecosystem for embedded development.







	Hardware


	An OpenRTK330 EVK set


	A PC










Import and Build Firmware from Source


	Open Aceinna Navigation Studio on VS Code





After installation of “Aceinna” extension, go to the lest most menu bar and click the “ant” icon of PlatformIO extension, it will bring up panel 1 and 2 (red numbered blue rectangle areas in the following figure) of PlatformIO, and then click “Quick Access->PIO Home->Open” will bring up the “Aceinna Navigation Studio” home page


[image: _images/AceinnaPlatformIOHome.jpg]



Alternatively, you can click the “Home” icon in blue rectangle #4 to bring up the home page. Through the icons inside the blue rectangle area #3, you can navigate between different pages of “Aceinna” extension.





	Import or Open Project





On the “Aceinna Home” page, ,as shown by the figure above, you will find the blue rectangle area #5 the entry to import or open OpenRTK/OpenIMU example projects with firmware open-sourced. For the first time, click “Custom IMU Examples” to import a new project which will be installed at the following location by default


<PlatformIO Installaton Folder>/platformio/Projects/ProjectName








Now you can edit, build and test the project. All your changes will remain in the above-mentioned directory and subdirectories. Next time when you return to development - open Aceinna “Home” page and click “Open Project”, choose “Projects” and select required project from the list.

The source tree of imported project tree has the following structure:


project directory -|
                   |
                   |
                   |--- .pio --|
                   |           |-- build --|
                   |           |           |-- board-|
                   |           |                     |-- binary image (firmware.bin)
                   |           |                     |-- elf image (firmware.elf)
                   |           |                     .
                   |           |                     .
                   |           |                     .
                   |           |
                   |           |- libdeps -|
                   |           |           |-- board-|  Library dependencies
                   |                                 |
                   |                                 |--library1 src tree
                   |                                 |
                   |                                 |--library2 src tree
                   |                                 |
                   |                                 |--library3 src tree
                   |                                 |
                   |                                 .
                   |                                 .
                   |
                   |
                   |--include (optional user include files)
                   |
                   |--lib (optional user library directory tree)
                   |
                   |--src (user source files tree)
                   |












	Compile and Load Firmware via JTAG





Once you have imported an example project, a good first step is to compile and download this application using your ST-LINK. At the bottom of the VS Code window is the shortcut toolbar shown below.  To load an application to the OpenRTK330 with JTAG, simply click the Install/Download button while the ST-LINK is connected to your EVB.


[image: _images/VSCodeToolBar.png]






The following contents of this section present the user APIs for each of the firmware options


	RAWDATA APP


	RTK_INS APP











          

      

      

    

  

    
      
          
            
  
Algorithm Simulation System

GNSS-IMU-SIM is an IMU simulation project, which generates reference trajectories, IMU sensor output, GPS output,
odometer output and magnetometer output. Users choose/set up the sensor model, define the waypoints and provide algorithms,
and gnss-imu-sim can generated required data for the algorithms, run the algorithms, plot simulation results,
save simulations results, and generate a brief summary.

GitHub Link: GNSS-INS-SIM [https://github.com/Aceinna/gnss-ins-sim]

Use the browser’s back button to return.




          

      

      

    

  

    
      
          
            
  
OpenRTK Software Support

This section reviews more detail on how OpenIMU platform code modules are structured and work together:


	Software Dataflow Diagram


	RTOS


	Sampling and Filtering


	UART Messaging


	SPI Messaging


	Settings


	Tutorial App










          

      

      

    

  

    
      
          
            
  
Combined solution PVA packet















	Frame type

	“pS”



	Description

	position, speed, attitude



	Data Frame

	Start

	Frame type

	Data length

	Data comment

	Check



	0x55 0x55

	0x70 0x53

	124

	see below

	CRC_L  CRC_H



	Data content:



	0

	uint32

	week

	
	GPS week, seconds within GPS week: GPS
time, accurate to milliseconds within a
week



	4

	double

	timeOfWeek

	s



	12

	uint32

	positionMode

	
	positionMode Positioning mode:0:Invalid
1: Single point solution 4: Fixed
solution 5: Floating point solution



	16

	double

	latitude

	deg

	latitude



	24

	double

	longitude

	deg

	longitude



	32

	double

	height

	m

	height



	40

	uint32

	numberOfSVs

	
	Number of satellites



	44

	float

	hdop

	
	horizontal component precision factor



	48

	float

	differential_age

	s

	differential time difference



	52

	uint32

	vel_mode

	
	Speed ​​mode: 0: Invalid 1: Doppler
2: Pure INS calculation



	56

	uint32

	insStatus

	
	Inertial navigation status: 0: invalid
1: INS is in alignment 2: INS solution
is not reliable 3: INS solution is good
4: Pure INS solution (no GNSS update)



	60

	uint32

	insPositionType

	
	Inertial navigation positioning type:0:
Invalid 1: Pseudo-range single point
positioning/INS combination 4:RTK fixed
solution/IN combination 5:RTK floating
point



	64

	float

	north_vel

	m/s

	speed (north)



	68

	float

	east_vel

	m/s

	speed (east)



	72

	float

	up_vel

	m/s

	speed (up)



	76

	float

	roll

	deg

	roll angle



	80

	float

	pitch

	deg

	pitch angle



	84

	float

	heading

	deg

	yaw angle



	88

	float

	latitude_std

	
	Latitude standard deviation



	92

	float

	longitude_std

	
	Longitude standard deviation



	96

	float

	height_std

	
	Height standard deviation



	100

	float

	north_vel_std

	
	Speed ​​(north) standard deviation



	104

	float

	east_vel_std

	
	Speed ​​(East) standard deviation



	108

	float

	up_vel_std

	
	Speed ​​(up) standard deviation



	112

	float

	roll_std

	
	roll angle standard deviation



	116

	float

	pitch_std

	
	pitch angle standard deviation



	120

	float

	heading_std

	
	yaw angle standard deviation












          

      

      

    

  

    
      
          
            
  OpenRTK EVK Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not
(yet) comply with some or any technical or legal requirements that are applicable to finished
products, including, without limitation, directives regarding electromagnetic compatibility,
recycling (WEEE), FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna
supplied this board/kit "AS IS," without any warranties, with all faults, at the buyer's and further
users' sole risk. The user assumes all responsibility and liability for proper and safe handling of the
goods. Further, the user indemnifies Aceinna from all claims arising from the handling or use of
the goods. Due to the open construction of the product, it is the user's responsibility to take any
and all appropriate precautions with regard to electrostatic discharge and any other technical or
legal concerns. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER
NOR ACEINNA SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES. No license is granted under any patent right or other intellectual
property right of Aceinna covering or relating to any machine, process, or combination in which
such Aceinna products or services might be or are used.







          

      

      

    

  

    
      
          
            
  
Aceinna Network Coverage

At present, a GNSS network with 17 stations provides OSR
(Observation State Representation) corrections service in Bay Area,
US. More RTK stations will be deployed to provide services in U.S.

[image: ../_images/network.png]
OpenRTK supports all high precision correction based on Ntrip/RTCM.
In future, more data format will be supported. Customers can choose
any GNSS network service they want. Current existed RTK network services
based open standard format are listed.


	America


	HxGN SmartNet [https://hxgnsmartnet.com/]


	Swift Navigation [https://www.swiftnav.com/]






	China


	Qianxun SI [https://mall.qxwz.com/]


	Sixents Technology [https://www.sixents.com/]











          

      

      

    

  

    
      
          
            
  
API key Generation


	Login developers website. https://developers.aceinna.com/





[image: ../_images/ntrip_1.png]




	Generate and get password.





[image: ../_images/ntrip_2.png]
[image: ../_images/ntrip_3.png]
[image: ../_images/ntrip_4.png]
[image: ../_images/ntrip_5.png]
[image: ../_images/ntrip_6.png]
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Specifications










	Specifications



	Correction type

	OSR



	Correction format

	RTCM 3.0



	Constellation

	GPS, GLONASS, BDS, Galileo



	Frequency

	GPS/GLONASS Dual, BDS/Galileo Triple



	Ntrip Configuration



	Type

	RTK

	Cloud RTK



	Host

	rtk.aceinna.com

	rtk.aceinna.com



	Port

	2201

	2202



	Mountpoint

	RTK

	RTK



	User

	<Your login user name>



	Password

	<Your API Key>












          

      

      

    

  

    
      
          
            
  
RTK/Cloud RTK


RTK

OpenRTK330 sends nmea gga data to RTK server, RTK server calculates the appropriate
base station according to the coordinates of gga data, and then sends the real-time
observation data of the base station to OpenRTK330.

[image: ../_images/nw_RTK.png]


Cloud RTK

OpenRTK330 sends its observation data to the cloud RTK server. Cloud RTK calculates
coordinates according to the observation data, selects the appropriate base station
using the coordinates, then uses the observation data of the base station and OpenRTK330
to carry out RTK algorithm operation, and then sends the calculated NMEA GGA data to OpenRTK330.

[image: ../_images/nw_cloudrtk.png]







	Type

	Send Data to Server

	Receive Data from Server



	RTK

	NMEA GGA

	RTCM (Base station data)



	Cloud RTK

	RTCM (Observation data)

	NMEA GGA










          

      

      

    

  

    
      
          
            
  
Attitude Parameters


Contents


	Direction Cosine Matrices


	Quaternion Elements


	Euler Angles


	Mathematical Relationships between Attitude Parameters


	Attitude Parameters Example






This paper makes use of three different attitude parameters to specify the orientation of a body
(B) relative to another frame (such as the N-frame).



	Direction Cosine Matrices


	Quaternion Elements


	Euler Angles








Direction Cosine Matrices

The first of these, the direction cosine matrix1, \({^N}{R}{^B}\), specifies the
relationship of one frame relative to another by relaying how the basis-vectors of one frame relate
to the basis-vectors of another.  These matrices have the property that they can, in a
straightforward manner, transform vectors from one frame into another, such as from the Body to the
NED-frame:


\[\vec{x}{^N} = {^N}{R}{^B} \cdot \vec{x}{^B}\]

In the upcoming derivation, transformations based on the Body-Fixed 3-2-1 Rotation set2
and the formulation used by Thomas Kane3  are relied upon extensively.



Quaternion Elements

The second parameter used to convey orientation information are quaternion elements4
(also called Euler parameters), \({^N}{\vec{q}}{^B}\).  Quaternions are relatively easy to propagate in time and
do not possess singularities.  However, they are not intuitive.  Quaternions consist of a scalar
and a vector component:


\[\begin{split}{^N}{\vec{q}}{^B} &= { \begin{bmatrix} {
                                        q_{0} \hspace{5mm} \vec{q}_{v}
                       } \end{bmatrix}
                     }^{T} \\
                  {\hspace{5mm}} \\
&= { \begin{bmatrix} {q_{0} \hspace{5mm} q_{1} \hspace{5mm} q_{2} \hspace{5mm} q_{3}} \end{bmatrix} }^{T} \\
                  {\hspace{5mm}} \\
&= { \begin{bmatrix} {
                       \cos{\begin{pmatrix} \theta \over 2 \end{pmatrix}} \hspace{5mm}
                       \hat{u} \cdot \sin{\begin{pmatrix} \theta \over 2 \end{pmatrix}}
     } \end{bmatrix}
   }^{T}\end{split}\]



Euler Angles

The final parameter used to relay attitude information are Euler angles.  These are more intuitive
than quaternions but, unlike quaternions, experience singularities at certain angles (based on the
selected rotation sequence).  For a 321-rotation sequence5, the singularity occurs
at a pitch of 90°.



Mathematical Relationships between Attitude Parameters

All three parameters contain the same information.  The equations that relate the various
parameters follow6.  For a 321-rotation sequence, the expression relating the rotation
transformation matrix of the body-frame in the NED-frame, \({^N}{R}{^B}\) , to the quaternion elements,
\({^N}{\vec{q}}{^B}\), is:


\[{{^N}{R}{^B}} = {
                  \begin{bmatrix} {
                                    \begin{array}{ccc}
                                                       {{q_0}^2 + {q_1}^2 - {q_2}^2 - {q_3}^2} &
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_2 - q_0 \cdot q_3} \end{pmatrix} }} &
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_3 + q_0 \cdot q_2} \end{pmatrix} }}
                                                       \cr
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_2 + q_0 \cdot q_3} \end{pmatrix} }} &
                                                       {{q_0}^2 - {q_1}^2 + {q_2}^2 - {q_3}^2} &
                                                       {2 \cdot { \begin{pmatrix} {q_2 \cdot q_3 - q_0 \cdot q_1} \end{pmatrix} }}
                                                       \cr
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_3 - q_0 \cdot q_2} \end{pmatrix} }} &
                                                       {2 \cdot { \begin{pmatrix} {q_2 \cdot q_3 + q_0 \cdot q_1} \end{pmatrix} }} &
                                                       {{q_0}^2 - {q_1}^2 - {q_2}^2 + {q_3}^2}
                                    \end{array}
                  } \end{bmatrix}
                }\]

\({^N}{R}{^B}\) can also be expressed in terms of Euler-angles, \({{^N}{\vec{\Theta}}{^B}} = { \begin{bmatrix} { {{^\perp}{\phi}{^B }} \hspace{5mm} {{^\perp}{\theta}{^B }} \hspace{5mm} {{^N}{\psi}{^\perp}} } \end{bmatrix} }^{T}\):


\[{{^N}{R}{^B}} = {
                  \begin{bmatrix} {
                                    \begin{array}{ccc}
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} } &
                                                       { -\sin{\begin{pmatrix} {{^N}{\psi}{^\perp}} \end{pmatrix}} } &
                                                       { 0 }
                                                       \cr
                                                       { \sin{\begin{pmatrix} {{^N}{\psi}{^\perp}} \end{pmatrix}} } &
                                                       { \cos{\begin{pmatrix} {{^N}{\psi}{^\perp}} \end{pmatrix}} } &
                                                       {0}
                                                       \cr
                                                       {0} &
                                                       {0} &
                                                       {1}
                                    \end{array}
                  } \end{bmatrix}
                }
                \cdot
                {
                  \begin{bmatrix} {
                                    \begin{array}{ccc}
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} } &
                                                       { \sin{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \sin{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} } &
                                                       { \sin{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \cos{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} }
                                                       \cr
                                                       { 0 } &
                                                       { \cos{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} } &
                                                       { -\sin{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} }
                                                       \cr
                                                       { -\sin{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} } &
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \sin{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} } &
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \cos{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} }
                                    \end{array}
                  } \end{bmatrix}
                }\]

In this case, \({^N}{R}{^B}\) is broken up into two sequential transformations, which separate the roll
and pitch calculations from the heading (this method is used later to form attitude measurements
from the accelerometer and magnetometer readings):


\[{{^N}{R}{^B}} = {{^N}{R}{^\perp}} \cdot {{^\perp}{R}{^B}}\]

Finally, Euler angles, \({^N}{\vec{\Theta}}{^B}\), can be expressed in terms of quaternion-elements, \({^N}{\vec{q}}{^B}\):


\[\begin{split}{^\perp}{\phi}{^B}   &= {atan2}{ \begin{pmatrix} {
                                               2 \cdot { \begin{pmatrix} {q_2 \cdot q_3 + q_0 \cdot q_1} \end{pmatrix} }, \hspace{2mm} {{q_0}^2 - {q_1}^2 - {q_2}^2 + {q_3}^2}
                             } \end{pmatrix}
                           } \\
                  {\hspace{5mm}} \\
{^\perp}{\theta}{^B} &= -{asin}{ \begin{pmatrix} {
                                               2 \cdot { \begin{pmatrix} {q_1 \cdot q_3 - q_0 \cdot q_2} \end{pmatrix} }
                             } \end{pmatrix}
                           } \\
                  {\hspace{5mm}} \\
{^N}{\psi}{^\perp}   &= {atan2}{ \begin{pmatrix} {
                                               2 \cdot { \begin{pmatrix} {q_1 \cdot q_2 + q_0 \cdot q_3} \end{pmatrix} }, \hspace{2mm} {{q_0}^2 + {q_1}^2 - {q_2}^2 - {q_3}^2}
                             } \end{pmatrix}
                           }\end{split}\]


Note

Due to the way the roll and pitch are separated from the heading, the Euler angles,
\({^\perp}{\phi}{^B}\), \({^\perp}{\theta}{^B}\), and \({^N}{\psi}{^\perp}\) are the same if written as \({^N}{\phi}{^B}\), \({^N}{\theta}{^B}\),
and \({^N}{\psi}{^B}\).





Attitude Parameters Example

Using the direction cosine matrix formulation, the transformation to get from the body to
inertial-frame (ECEF) in Figure 1 is composed of multiple transformations:


\[{^E}{R}{^B} = {^E}{R}{^N} \cdot {^N}{R}{^\perp} \cdot {^\perp}{R}{^B}\]

Each transformation describes how one coordinate frame is related to the next in the sequence of
rotations.



	\({^\perp}{R}{^B}\): Transformation from the (light-blue) body-frame to the (dark blue) local
perpendicular-frame \((\perp)\)


	\({^N}{R}{^\perp}\): Transformation from the (dark blue) \(\perp\)-frame to the (red) local
NED-frame


	\({^E}{R}{^N}\): Transformation from the (red) NED-frame to the ECEF-frame (ECEF-Frame not shown;
black line are latitude and longitude lines).  \({^E}{R}{^N}\) is based on the WGS84 model.







This notation not only makes the formulation easier by simplifying the full complexity of the
transformation but it helps avoid confusion by explicitly specifying the frame used in each
calculation.

Some additional information about these frames:



	\({^E}{R}{^N}\), the transformation between the NED and Earth-frame (used in the INS formulation),
is solely a function of ECEF location, \({^E}{R}{^N} = f({\vec{r}}{^E})\), and is
based on the WGS84 model.


	\({^N}{R}{^B}\), the transformation between the NED and body-frame is solely a function of the
attitude of the body-frame (roll, pitch, and heading angles of the body) and can be measured
by the local gravity and magnetic-field vectors (or GPS heading),
\({^N}{R}{^B} = f({\vec{g}}, {\vec{b}})\)








	1

	Pronounced “R B-in-N” and refers to the orientation of the B-Frame in the N-Frame.
Also referred to as a rotation transformation matrix.



	2

	A 3-2-1 rotation set defines the attitude of one set of basis-vectors (local-frame)
relative to another by specifying the angles of rotation required to get from the
inertial (N) to the local-frame (L).  With the local and inertial-frames initially
aligned, the rotations are performed in the following order: the first is about the
local z-axis (3), followed by a rotation about the local y-axis (2), and finally by a
rotation about the local x-axis (1).  The resulting matrix, \({^N}{R}{^L}\) = \({R}_{321}\), is
composed of column vectors formed from the xyz-axes of the local-frame coordinatized
in the inertial-frame:
\({^N}{R}{^L}\) = \(\begin{bmatrix} {{{\hat{x}_{L}}{^N}} \hspace{5mm} {{\hat{y}_{L}}{^N}} \hspace{5mm} {{\hat{z}_{L}}{^N}}} \end{bmatrix}\).



	3

	Kane, Thomas R.; Levinson, David A. (1985), Dynamics, Theory and Applications,
McGraw-Hill series in mechanical engineering, McGraw Hill.  Note: one main
difference between Kane’s approach is the DCM is the transpose of the DCM of other
formulations; I think Kane’s formulation is more intuitive.



	4

	Commonly referred to simply as “quaternion”.  To make it easier to reference the
elements in c, c++, and python, the first quaternion-element (the scalar component
of the quaternion) will have the zero index and is expressed as
\({q}_{0}=\cos \begin{pmatrix} \theta / 2 \end{pmatrix}\).  The vector
component of the quaternion,
\({\vec{q}}_{v}=\hat{u} \cdot \sin \begin{pmatrix} \theta / 2 \end{pmatrix}\),
occupies elements 2, 3, and 4.



	5

	The 321-rotation sequence is the only rotation sequence considered in this
paper.



	6

	Based on unpublished notes by Keith Reckdahl (Direction Cosines, Rotations, and
Quaternions); this paper follows Kane’s approach closely.  Any reference on the
subject will work.









          

      

      

    

  

    
      
          
            
  
Coordinate Frames

A body’s position and orientation can only be measured relative to another set of basis vectors
(coordinate-frame).  In this formulation, inertial sensors provide the information to compute the
attitude and position of a body in space relative to an “inertial” frame, such as the
Earth-Centered, Earth-Fixed frame (ECEF) or the North/East/Down-frame (NED)1.  The
equations to come use the superscripts listed in Table 1  to specify the frame in
which a variable is measured.


Table 1: Frames and their Identifiers used throughout Algorithm Derivation

	Frame

	Superscript

	Description





	ECEF-Frame

	E

	
Frame aligned with Earth’s axis (z-axis parallel to axis-of-

rotation, x-axis exits at the equator through the prime-

meridian); rotates with the Earth (not shown in Figure 1)






	NED-Frame

	N

	
Frame aligned with the local tangent-frame (z-axis parallel to

the gravity vector) with the x-axis aligned with true or

magnetic north.  Red lines in Figure 1.






	Perp-Frame

	\(\perp\)

	
Frame aligned with the local tangent-frame (\(z_\perp\)-axis

parallel to the gravity vector).  Dark blue lines in Figure 1






	Body-Frame

	B

	
Frame aligned with the body-frame.  \(x_\perp\)-axis lies in the

plane formed by the \(x_\perp\) and \(z_\perp\)-axes. Light

blues lines in Figure 1









Figure 1 shows the relative orientation of three of the four frames listed in Table 1 (ECEF not
shown) for a hypothetical body on the surface of the Earth with a roll of 20°, a pitch of 10°, and
a heading of 30°.  The dashed red lines illustrate the components of the \(\perp\)-frame axes in
the N-Frame while the dashed blue lines indicate the projection of the B-Frame axes onto the N-frame.


[image: CoordFrames]

Figure 1: Coordinate Frames used in Derivation (N, perp, and B-Frames)




	1

	Strictly speaking, neither the ECEF-frame nor the NED-frame are inertial.  Both move
and rotate relative to the stars; the NED-frame changes with location as well.
However, the two are sufficient for use with the OpenIMU line of products.








          

      

      

    

  

    
      
          
            
  
Coordinates System


Coordinate Frames

A body’s position and orientation can only be measured relative to another set of basis vectors
(coordinate-frame).  In this formulation, inertial sensors provide the information to compute the
attitude and position of a body in space relative to an “inertial” frame, such as the
Earth-Centered, Earth-Fixed frame (ECEF) or the North/East/Down-frame (NED)1.  The
equations to come use the superscripts listed in Table 1  to specify the frame in
which a variable is measured.


Table 1: Frames and their Identifiers used throughout Algorithm Derivation

	Frame

	Superscript

	Description





	ECEF-Frame

	E

	
Frame aligned with Earth’s axis (z-axis parallel to axis-of-

rotation, x-axis exits at the equator through the prime-

meridian); rotates with the Earth (not shown in Figure 1)






	NED-Frame

	N

	
Frame aligned with the local tangent-frame (z-axis parallel to

the gravity vector) with the x-axis aligned with true or

magnetic north.  Red lines in Figure 1.






	Perp-Frame

	\(\perp\)

	
Frame aligned with the local tangent-frame (\(z_\perp\)-axis

parallel to the gravity vector).  Dark blue lines in Figure 1






	Body-Frame

	B

	
Frame aligned with the body-frame.  \(x_\perp\)-axis lies in the

plane formed by the \(x_\perp\) and \(z_\perp\)-axes. Light

blues lines in Figure 1









Figure 1 shows the relative orientation of three of the four frames listed in Table 1 (ECEF not
shown) for a hypothetical body on the surface of the Earth with a roll of 20°, a pitch of 10°, and
a heading of 30°.  The dashed red lines illustrate the components of the \(\perp\)-frame axes in
the N-Frame while the dashed blue lines indicate the projection of the B-Frame axes onto the N-frame.


[image: CoordFrames]

Figure 1: Coordinate Frames used in Derivation (N, perp, and B-Frames)





Coordinate Transformation

The receiver or satellite positions in OpenRTK are internally represented as the X, Y, Z
components in an ECEF (earth center earth fixed) coordinates system. What ECEF frame used
is not explicitly defined but depends on the satellite ephemeris and the predefined
base station position. For example, with GPS signals and navigation data, the single point positioning
results are obtained in WGS84. The baseline analysis with the base station with the position
in an ECEF frame basically brings the rover position in the same ECEF frame. Practically,
all of usually used ECEF frames in GNSS navigation processing like WGS 84, PZ90.02 and ITRF,
are identical within the accuracy of broadcast ephemeris or single point positioning. However,
more strict and careful handling of the coordinates system is needed for the baseline analysis or PPP.
The unified coordinates system is desirable to minimize the processing error in these cases.


Transformation from geodetic position to ECEF XYZ position

The geodetic position are defined based on a reference ellipsoid. The geodetic latitude \(\phi_r\),
longitude \(\lambda_r\) and the ellipsoidal height \(h\) can be transformed to ECEF XYZ position
\({\pmb r}_r = {(x,y,z)^T}\) as follows:


\[\begin{split}&e^2 = f(2-f)\\
{\hspace{5mm}} \\
&v = \frac{a}{\sqrt{(1-{e}^{2}sin{\phi_r}^2)}}\\
{\hspace{5mm}} \\
&r_r=\begin{pmatrix}
{(v + h)cos\phi_{r}cos\lambda_r}\\
{(v+h)cos\phi_{r}sin\lambda_r}\\
{v(1 - e^2)sin\phi_r}
\end{pmatrix}\end{split}\]

where:


\(a\): major radius of the earth reference ellipsoid (m)

\(f\): flattening of the earth reference ellipsoid




OpenRTK uses the following values for a and f of the reference ellipsoid provided by the WGS84 datum.


\(a\) = 6378137.0 (m)

\(f\) = 1.0/298.257223563




[image: ../_images/ReferenceEllipsoid.png]


Transformation from ECEF XYZ position to geodetic position

To transform the XYZ position \({\pmb r}_r = {(x,y,z)^T}\) in ECEF to the geodetic position,
the following procedure is applied. The geodetic latitude is derived by an iterative method in the procedure.


\[\begin{split}&r = \sqrt {x^2 + y^2}\\
{\hspace{5mm}} \\
&\phi_{r,0} = 0\\
{\hspace{5mm}} \\
&\phi_{r,i+1} = arctan(\frac{z}{r} - \frac{ae^2tan\phi_{r,i}}{r\sqrt{1 + (1 - e^2){tan}^2\phi_{r,i}}})\\
{\hspace{5mm}} \\
&\phi_r = \lim_{i \to \infty}\phi_{r,i}\\
{\hspace{5mm}} \\
&\lambda = ATANA(y,x)\\
{\hspace{5mm}} \\
&h = \frac{r}{cos\phi_r} - \frac{a}{\sqrt{(1-e^2){sin}^2\phi_r}}\end{split}\]



Azimuth and elevation angles of satellite direction

The unit LOS (line‐of‐sight) vector from the receiver to the satellite
can be expressed in the ECEF coordinates as:


\[{\pmb e}^s_r = \frac{{\pmb r}^s(t^s)-{\pmb r}_r(t_r)}{\left \| {\pmb r}^s(t^s)-{\pmb r}_r(t_r) \right \|}\]

In the equation, the earth rotation effect is neglected. The azimuth and elevation
angles \(Az_r^s\) and \(El_r^s\) of the satellite direction from the receiver
site can be derived from:


\[\begin{split}&{\pmb e}_{r,enu}^s = {\pmb E}_r{\pmb e}_r^s = {(e_e,e_n,e_u)}^T\\
{\hspace{5mm}} \\
&Az_r^s = ATAN2(e_e,e_n)\\
{\hspace{5mm}} \\
&El_r^s = arcsin(e_u)\end{split}\]

where \(\pmb E_r\) is the coordinates rotation matrix from ECEF to the local coordinates at the receiver position.

[image: ../_images/Azimuth.png]

	1

	Strictly speaking, neither the ECEF-frame nor the NED-frame are inertial.  Both move
and rotate relative to the stars; the NED-frame changes with location as well.
However, the two are sufficient for use with the OpenIMU line of products.










          

      

      

    

  

    
      
          
            
  
GNSS Satellite Ephemerides and Clocks

OpenRTK supports broadcast ephemerides and clocks for GPS, GLONASS, Galileo and BeiDou.
The following equations show the ephemeris and clock models used in RTKLIB.


Broadcast ephemerides and clocks for GPS and Galileo

Broadcast ephemeris and SV clock parameters for GPS and Galileo are given in navigation
messages as:


\[\pmb{P}_{eph}(t_{oe},t_{oc},IOD) = {(a,e,i_0,\Omega_0,\omega,M_0,\Delta{n},\dot{I},\dot{\Omega},C_{us},C_{uc},C_{rs},C_{rc},C_{is},C_{ic},af_0,af_1,af_2,T_{GD})}^T\]

By using these parameters, the satellite position (antenna phase center position) \(\pmb{r}^s(t)\) in ECEF, the satellite clock bias
\(dT^s(t)\) and clock drift \(dT^s(t)\) are computed as:


\[\begin{split}&{t}_k = t-t_{oe}\\
&M = M_0 + (\sqrt{\frac{\mu}{a^3}}+\Delta{n})t_k\\
&M = E-esinE\\
&a = \frac{\sqrt{1-e^2}sinE}{cosE-e}\\
&\phi=arctan\alpha+\omega\\
&\delta{u} = C_{us}sin2\phi+C_{uc}cos2\phi\\
&\delta{r} = C_{rs}sin2\phi+C_{rc}cos2\phi\\
&\delta{i} = C_{is}sin2\phi+C_{ic}cos2\phi\\
&u = \phi+\delta{u}\\
&r = a(1-ecosE)+\delta{r}\\
&i = i_0+\delta{i}+\dot{I}t_k\\
&\Omega = \Omega_0+(\dot{\Omega}-\omega_e)t_k-\omega_et_{oe}\\
&\pmb{r}^s(t)=r\begin{pmatrix}
      {cos\ u\ cos\ \Omega-sin\ u\ cos\ i\ sin\ \Omega}\\
      {cos\ u\ sin\ \Omega+sin\ u\ cos\ i\ cos\ \Omega}\\
      {sin\ u\ sin\ i}
      \end{pmatrix}\\
&t_c = t-t_{oc}
dT^s(t) = af_0+af_1t_c+af_2tc^2-\frac{2\sqrt{\mu}}{c^2}esqrt{A}sinE-bT_{GD}
d\dot{T}^s(t) = af_1+2af_2t_c\end{split}\]

where:


\(\mu\): earth gravitational constant (\(3.9860050\times10^{14}\ m^3/s^2\)
for GPS, \(3.986004418\times10^{14}\ m^3/s^2\) for Galileo)

\(\omega_e\): earth angular velocity (\(7.2921151467\times10^{-5}\ rad/s\))

\(b=f_1^2/f_1^2\) for \(L_i\) pseudorange

\(T_{GD}\): group delay parameters for GPS, \(B_{GD}\) for Galileo (s)




The Kepler equation can be solved the following iteration by Newtonʹs method.



\[\begin{split}&E_0 = M\\
&E_{i+1} = E_i-\frac{E_i-esin\ E_i-M}{1-ecos\ E_i}\\
&E = \lim_{i \to \infty}E_i\end{split}\]




The broadcast ephemerides and clock are applied in case that the processing option ʺSatellite
Ephemeris/Clockʺ to ʺBroadcastʺ as well as GLONASS and BeiDou.



Broadcast ephemerides and clocks for GLONASS

Broadcast ephemeris and clock parameters for GLONASS are given in the navigation messages as:


\[\pmb{P}_{eph}(t_b)=(x,y,z,v_x,v_y,v_z,a_x,a_y,a_z,\tau_n,\gamma_n)\]

The differential eauations for the satellite position \(\pmb{r}^s(t)={(x,y,z)}^T\) and
velocity \(\pmb{v}^s(t)={(v_x,v_y,v_z)}^T\) in ECEF (PZ90.02) can be formed as:


\[\begin{split}&\frac{dx}{dt}=v_x, \frac{dy}{dt}=v_y, \frac{dz}{dt}=v_z\\
&\frac{dv_x}{dt}=-\frac{\mu}{r^3}x-\frac{3}{2}J_2\frac{\mu a_e^2}{r^5}x(1-\frac{5z^2}{r^2})+\omega_e^2x+2\omega_ev_y+a_x\\
&\frac{dv_y}{dt}=-\frac{\mu}{r^3}y-\frac{3}{2}J_2\frac{\mu a_e^2}{r^5}y(1-\frac{5z^2}{r^2})+\omega_e^2y+2\omega_ev_x+a_y\\
&\frac{dv_z}{dt}=-\frac{\mu}{r^3}z-\frac{3}{2}J_2\frac{\mu a_e^2}{r^5}z(3-\frac{5z^2}{r^2})+a_z\end{split}\]

where:


\(a_e\): earth semi-major axis (6378136.0 m)

\(\mu\): earth gravitational constant (\(398600.44\times10^9 m^s/s^2\))

\(\omega_e\): earth angular velocity (\(7.292115\times10^{-5} rad/s\))

\(J_x\): second zonal harmonic of the geopotential (\(1082626.7\times10^{-9}\))

\(r=\sqrt{x^2+y^2+z^2}\)




Note that two errata of GLONASS ICD 5.1 has be corrected in the models above.

The satellite position \(\pmb{r}^s(t)\) and velocity \(\pmb{v}^s(t)\) at the time \(t\) can be derived by the RK4
(Runge‐Kutta 4th order and stage) numerical integration to solve these differential equations
with the initial satellite position \(\pmb{r}^s(t_b)\) and velocity \(\pmb{v}^s(t_b)\) at the reference
time :\(t_b\). For satellite clock bias \(dT^s(t)\) and drift \(dT^s(t)\) at the epoch time \(t\) are also derived as:


\[dT^s(t) = -\tau_n+\gamma_n(t-t_b)
dT^s(t) = \gamma_n\]

The relativistic effect in the satellite clock are included in the GLONASS clock parameters. So the
relativistic correction is not applied in this case.



Broadcast ephemerides and clocks for BeiDou

For BeiDou satellites, the similar ephemeris and clock parameters as GPS, Galileo are provided in the
navigation messages as:


\[\pmb{P}_{eph}(t_{oe},t_{oc}) = {(a,e,i_0,\Omega_0,\omega,M_0,\Delta{n},\dot{I},\dot{\Omega},C_{us},C_{uc},C_{rs},C_{rc},C_{is},C_{ic},af_0,af_1,af_2,T_GD)}^T\]

For MEO and IGSO satellites of BeiDou, the same formulations for GPS ephemeris and clock, except for
\(\mu = 3.986004418\times10^{14}\), \(\omega_e = 7.2921150\times10^{-5}\) rad/s and the time \(t\) is expressed in BDT.

To obtain the satellite position \(\pmb{r}^s(t)\) of BeiDou GEO satellites at the time \(t\) in BDT, the equation above should be replaced by:


\[\begin{split}&\Omega = \Omega_0+\dot{\Omega}_{t_k}-\omega_et_{oe}\\
&\pmb{r}^s(t)=r\pmb{R}_z(\omega_et_k)\pmb{R}_x(-5°)r\begin{pmatrix}
  {cos\ u\ cos\ \Omega-sin\ u\ cos\ i\ sin\ \Omega}\\
  {cos\ u\ sin\ \Omega+sin\ u\ cos\ i\ cos\ \Omega}\\
  {sin\ u\ sin\ i}
  \end{pmatrix}\end{split}\]

where:



\[\begin{split}\pmb{R}_x{\theta} = \begin{pmatrix}
  1&0&0\\
  0&cos\ \theta&sin\ \theta\\
  0&-sin\ \theta&cos\ \theta
  \end{pmatrix},
\pmb{R}_z{\theta} = \begin{pmatrix}
  cos\ \theta&sin\ \theta&0\\
  -sin\ \theta&cos\ \theta&0\\
  0&0&1
  \end{pmatrix}\end{split}\]






Precise ephemerides and clocks

The precise ephemerides for GPS, GLONASS, Galileo and BeiDou are usually provided as SP3‐c files containing
satellite positions and velocities (optional) at every 15 min or 5 min epochs. To obtain the satellite
position at the time \(t\), an appropriate interpolation is needed. OpenRTK uses the fixed degree
(\(n=10\)) polynomial interpolation by Newton‐Nevilleʹs algorithm as:


\[\begin{split}&P_{j,j}(t) = x_j      &(i\leq j\leq i+n)\\
&P_{j,k}(t) = \frac{(t_k-t)P_{j,k-1}(t)+(t-t_j)P_{j+1,k}(t)}{t_k-t_j}\ \ \ \ &(i\leq j<k\leq i+n)\end{split}\]

where \(n\) is the degree of the polynomial for the interpolation and \(x(t_i),x(t_{i+1}),x(t_{i+2}),...,x(t_{i+n})\)
are the ephemeris values for each components at the epochs \(t_i,t_{i+1},t_{i+2},...,t_{i+n}\). For example, in the \(n=4\)
case, the interpolated value \(x(t)\) at the time \(t\) can be derived as:


\[\begin{split}&P_{i,i}(t) = x(t_i)&\ &\ &\ &\ \\
&\ &P_{i,i+1}(t) &\ &\ &\ &\ \\
&p_{i+1, i+1}(t) = x(t_{i+1})&\ &P_{i,i+2}(t)&\ &\ &\ \\
&\ &P_{i+1,i+2}(t)&\ &P_{i,i+3}(t)&\ \\
&P_{i+2,i+2}(t)=x(t_{i+2})&\ &P_{i+1,i+3}(t)&\ &P_{i,4}(t)=x(t)\\
&\ &P_{i+1,i+2}(t)&\ &P_{i+1,i+4}(t)&\ \\
&P_{i+3,i+3}(t)=x(t_{i+3})&\ &P_{i+2,i+4}(t)&\ &\ \\
&\ &P_{i+3,i+4}(t)&\ &\ &\ \\
&P_{i+4,i+4}(t)=x(t_{i+4})&\ &\ &\ &\ \\\end{split}\]

Note that precise ephemerides usually present the CoM (center of mass) positions of
satellite not as the antenna phase center position. So users should correct the
satellite antenna phase center offset to use the precise ephemerides.

In spite of the precise ephemeris high‐order polynomial interpolation, a simple linear
interpolation is implemented for precise clocks provided as SP3‐c or clock RINEX files as:


\[dT^s(t)=\frac{(t_{i+1}-t)dT^s(t_i)+(t-t_i)dT^s(t_{i+1})}{t_{i+1}-t_i}\ \ \ \ \ (t_i\leq t<t_{i+1})\]

For the precise clocks provided by IGS (International GNSS service), the relativistic effect should be
corrected as:


\[dT^s(t)=\frac{(t_{i+1}-t)dT^s(t_i)+(t-t_i)dT^s(t_{i+1})}{t_{i+1}-t_i}-2\frac{\pmb{r}^s{(t)}^T{\pmb{v}}^s(t)}{c^2}\]

where \(\pmb{r}^s(t)\) and \(\pmb{v}^s(t)\) are the satellite position and velocity derived from the precise ephemerides.

The precise ephemerides and clocks are applied in case that the processing option ʺSatellite
Ephemeris/Clockʺ to ʺPreciseʺ.





          

      

      

    

  

    
      
          
            
  
GNSS Signal Measurement Models


Pseudorange measurement Models

The pseudorange is defined as ʺthe distance from the receiver antenna to the satellite antenna
including receiver and satellite clock offsets (and other biases, such as atmospheric delays)ʺ.  The
\(L_i\) pseudorange \(P_{r,i}^s\) can be expressed by using the signal reception time
\(\bar t_r\) (s) measured by the receiver clock  and the signal transmission time \(\bar t^s\) (s)
measured by the satellite clock  as:


\[P_{r,i}^s = c(\bar t_r - \bar t^s)\]

The equation can be written by using the geometric range \(\rho_r^s\) between satellite and receiver antennas,
the receiver and satellite clock biases \(dt_r dT^s\), the ionospheric and tropospheric delay \(I_{r,i}^s\),
\(T_r^s\), and the measurement error \(\varepsilon_p\) as:


\[\begin{split}P_{r,i}^s &= c((t_r+dt_r(t_r))-(t^s+dT^s(t^s)))+\varepsilon_p\\
&=c(t_r-t^s)+c(dt_r(t_r)-dT^s(t^s))+\varepsilon_p\\
&=(\rho_r^s + I_{r,i}^s+T_r^s)+c(dt_r(t_r)-dT^s(t^s))+\varepsilon_p\\
&=\rho_r^s+c(dt_r(t_r)-dT^s(t^s))+I_{r,i}^s+T_r^s+\varepsilon_p\end{split}\]

[image: ../_images/PseudorangeModel.png]


Carrier‐phase and phase‐range measurement model

The carrier‐phase is ʺ… actually being a measurement on the beat frequency between
the received carrier of the satellite signal and a receiver‐generated reference frequencyʺ.
The \(L_i\) carrier‐phase \(\phi_{r,i}^s\) can be expressed as:


\[\begin{split}\phi_{r,i}^s &= \phi_{r,i}^s(t^s) + N_{r,i}^s + \varepsilon_\phi\\
&=(f_i(t_r+dt_r(t_r)-t_0)+\phi_{r,0,i})-(f_i(t^s+dT^s(t^s)+t_0)+\phi_{0,i}^s)+N_{r,i}^s+\varepsilon_\phi\\
&=\frac{c}{\lambda_i}(t_r-t^s)+\frac{c}{\lambda_i}(dt_r(t_r)-dT^s(t^s))+(\phi_{r,0,i}+\phi_{0,i}^s+N_{r,i}^s)+\varepsilon_\phi\end{split}\]

where \(t_0\) is the initial time (s), \(\phi_{r,i}(t)\) is the \(L_i\) phase (cycle) of receiver local oscillator
and \(\phi_i^s(t)\) is the \(L_i\) phase (cycle) of transmitted navigation signal at the time \(t\).
\(\phi_{r,0,i}\) is the \(L_i\) initial phase (cycle) of receiver local oscillator and \(\phi_{r,0,i}^s\) is
the \(L_i\) initial phase (cycle) of transmitted navigation signal at the time \(t_0\).

The \(L_i\) phase‐range \(\Phi_{r,i}^s\), defined as the carrier‐phase multiplied by the carrier frequency
\(\lambda_i\) in m, also can be expressed by using the carrier phase bias \(B_{r,i}^s\), and carrier‐phase
correction terms \(d\Phi_{r,i}^s\), including antenna phase center offsets and variations, station displacement
by earth tides, phase windup effect and relativity correction on the satellite clock as:


\[\begin{split}\Phi_{r,i}^s &= \lambda_i\phi_{r.i}^s\\
&=c(t_r-t^s)+c(dt_r(t_r)-dT^s(t^s))+\lambda_i(\phi_{r,0,i}-\phi_{0,i}^s+N_{r,i}^s)+\lambda_i\varepsilon_\phi\\
&=\rho_r^s+c(dt_r(t_r)-dT^s(t^s))-I_{r,i}^s+T_r^s+\lambda_iB_{r,i}^s+d\Phi_{r,i}^s+\varepsilon_\phi\\\end{split}\]

where:



\[\begin{split}&B_{r,i}^s=\phi_{0,i}^s+N_{r,i}^s\\
&d\Phi_{r,i}^s=-{\pmb{d}_{r,pco,i}}^Te_{r,enu}^s+{(\pmb{E}^s\pmb{d}_{pco,i}^s)}^T&
\pmb{e}_r^s+d_{r,pcv,i}(El)+d_{pcv,i}^s(\theta)-{\pmb{d}_{r,disp}}^T\pmb{e}_{r,enu}^s+\lambda_i\phi_{pw}\end{split}\]




\(N_{r,i}^s\) is often called as carrier‐phase integer ambiguity, carrier‐cycle ambiguity or simply ambiguity.
For the detailed formulation of the carrier‐phase correction terms.





          

      

      

    

  

    
      
          
            
  
GNSS RTK Algorithms

The GNSS RTK algorithms includes:



	GNSS Satellite Ephemerides and Clocks

	GNSS Signal Measurement Models

	Cycle Slip Detection

	RTK Robust Extended Kalman Filter

	Integer Ambiguity Resolution











          

      

      

    

  

    
      
          
            
  
Innovation / Measurement Error





Innovation Overview

The innovation (measurement error) is formed from the sensor measurements and the predicted states.
As the measurements and the system states are often not the same, one or the other needs to be
transformed into the measurement.  In the case of this algorithm, the state consists of an attitude
quaternion, NED-velocity, and NED-position.  The measurement come from accelerometer readings, GPS
latitude/longitude/altitude measurements, and horizontal/vertical velocities along with
ground-track.  In this case either the states need to be converted to match the measurements or vice-versa.

Once the measurements vectors are formed, the innovation (measurement error), \(\vec{\nu}_{k}\),
is computed:


\[\vec{\nu}_{k} = \vec{z}_{k} - \vec{h}_{k}\]

This result is used in the update stage of the EKF to generate the state error,
\({\Delta\vec{x}}_{k}\), given the Kalman gain matrix.

The available sensor information is used as follows:



	Accelerometers “level” the system (used to compute \({^{\perp}}{\phi}{_{meas}^{B}}\) and
\({^{\perp}}{\theta}{_{meas}^{B}}\)) FN


	Magnetometers and/or GPS heading information align the perp-frame with true or magnetic north
(\({^{N}}{\psi}{^{\perp}}\))


	GPS position and velocity measurements update the position and velocity estimates
(\(\vec{r}^{N}\) and \(\vec{v}^{N}\))







Measurement Details To Be Provided





          

      

      

    

  

    
      
          
            
  
Kalman Filter


Contents


	Prediction (High Dynamic Range (DR) Process)


	Innovation (Measurement Error)


	Update (Low DR Process)






The solution described in this document is based on a Kalman Filter that generates estimates of
attitude, position, and velocity from noisy sensor readings.  The classic Kalman Filter works
well for linear models, but not for non-linear models. Therefore, an Extended Kalman
Filter (EKF) is used due to the nonlinear nature of the process and measurements model.

Kalman filters operate on a predict/update cycle1.  The system state at the next
time-step is estimated from current states and system inputs.  For attitude calculations, this
input is the angular rate-sensor signal; velocity and position calculations use the
accelerometer signal.  The update stage corrects the state estimates for errors inherent in the
measurement signals (such as sensor bias and drift) using measurements of the true attitude,
position, and velocity estimated from the accelerometer, magnetometer, and GPS readings.  As these
signals are typically noisier2 or provided at a significantly lower rate than the
rate-sensor, they are not used to propagate the attitude, instead their information is used to
correct the errors in the estimate.

For a discrete-time system the prediction and update equations are:


Prediction (High Dynamic Range (DR) Process)

In this stage of the EKF, the attitude, velocity, and acceleration are propagated forward in time
from sensor readings.


\[\vec{x}_{k|k-1} = f\begin{pmatrix} {\vec{x}_{k-1|k-1}, \vec{u}_{k|k-1}} \end{pmatrix}\]


\[P_{k|k-1} = F_{k-1} \cdot P_{k-1|k-1} \cdot {F_{k-1} }^{T} + Q_{k-1}\]

The first equation (\(\vec{x}_{k|k-1}\)) is the State Prediction Model and the second
(\(P_{k|k-1}\)) is the Covariance Estimate.



Innovation (Measurement Error)

In this stage, the errors between the predicted states and the measurements are computed.


\[\vec{\nu}_{k} = \vec{z}_{k} - \vec{h}_{k}\]



Update (Low DR Process)

The final stage of the EKF generates updates (corrections) to the predictions based on the quality
of the process models, process inputs, and measurements.


\[\begin{split}S_{k} &= H_{k} \cdot P_{k|k-1} \cdot {H_{k} }^{T} + R_{k}
{\hspace{5mm}} \\
K_{k} &= P_{k|k-1} \cdot {H_{k} }^{T} \cdot  {S_{k}}^{-1}
{\hspace{5mm}} \\
\Delta{\vec{x}_{k}} &= K_{k} \cdot \vec{\nu}_{k}
{\hspace{5mm}} \\
\vec{x}_{k|k} &= \vec{x}_{k|k-1} + \Delta{\vec{x}_{k}}
{\hspace{5mm}} \\
\Delta{P_{k}} &= -K_{k} \cdot H_{k} \cdot P_{k|k-1}
{\hspace{5mm}}  \\
P_{k|k} &= P_{k|k-1} + \Delta{P_{k}}\end{split}\]

In the order listed, the above equations relate to:



	Innovation Covariance


	Kalman Gain


	State Error


	State Update


	Covariance Error


	Covariance Update







These terms will be defined in the sections that follow.


	1

	Kalman Filtering: Theory and Practice Using MATLAB, 3rd Edition, Mohinder S. Grewal,
Angus P. Andrews



	2

	In this case, noisier means that the sensor signals are corrupted, not just by
electrical noise, but by external influences as well.  In the case of the
accelerometer, the device picks up vehicle motion in addition to gravity
information.  The magnetometer signal is affected by external magnetic sources,
such as iron in passing vehicles and in roadways.









          

      

      

    

  

    
      
          
            
  
Measurement Model




Overview


It is possible to choose among various measurement models for a given EKF implementation.  A
particular model is selected based on many factors, one being the limitations of the available
measurements.  This formulation being described was selected due to the incomplete knowledge of the
magnetic environment of the system  and uses the available sensor information as follows:


#. Accelerometers “level” the system (used to compute \({^{\perp}}{\phi}{_{meas}^{B}}\) and
\({^{\perp}}{\theta}{_{meas}^{B}}\)) FN

#. Magnetometers and/or GPS heading information align the \(\perp\)-frame with true or
magnetic north (\({^{N}}{\psi}{^{\perp}}\))

#. GPS position and velocity measurements update the position and velocity estimates
(\(\vec{r}^{N}\) and \(\vec{v}^{N}\))




Based upon these steps, the measurement vector, \(\vec{z}_{k}\), is formed:


\[\vec{z}_{k} = {
                \begin{Bmatrix} {
                                \begin{array}{c}
                                                {\vec{r}_{GPS}^{N}}
                                                \cr
                                                {\vec{v}_{GPS}^{N}}
                                                \cr
                                                {^{N}}{\vec{\Theta}}{_{meas}^{B}}
                                \end{array}
                } \end{Bmatrix}
            }\]

with the corresponding measurement model, \(\vec{h}_{k}\):


\[\vec{h}_{k} = {
                \begin{Bmatrix} {
                                \begin{array}{c}
                                                {\vec{r}_{pred}^{N}}
                                                \cr
                                                {\vec{v}_{pred}^{N}}
                                                \cr
                                                {^{N}}{\vec{\Theta}}{_{pred}^{B}}
                                \end{array}
                } \end{Bmatrix}
            }\]

Both \({^{N}}{\vec{\Theta}}{_{meas}^{B}}\) and \({^{N}}{\vec{\Theta}}{_{pred}^{B}}\) are
3x1 column vectors containing the roll, pitch, and heading values.




Measurement Model


The measurement model, \({\vec{h}_{k}}\) relates the system states, \({\vec{x}_k}\), to
the system measurements.  The position and velocity
elements of this vector come directly from the position and velocity states, while
\({^{N}}{\Theta}{_{pred}^{B}}\) is computed from \({^N}\vec{q}_{pred}^{B}\), as follows:


\[\begin{split}{^{\perp}{\phi}_{pred}^{B}} &= atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{2} \cdot q_{3}+q_{0} \cdot q_{1}} \end{pmatrix},{q_{0}}^{2}-{q_{1}}^{2}-{q_{2}}^{2}+{q_{3}}^{2} } \end{bmatrix}\\
{\hspace{5mm}} \\
{^{\perp}{\theta}_{pred}^{B}} &= -asin \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{3}-q_{0} \cdot q_{2}} \end{pmatrix} } \end{bmatrix}\\
{\hspace{5mm}} \\
{^{N}{\psi}_{pred}^{\perp}} &= atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{2}+q_{0} \cdot q_{3}} \end{pmatrix},{q_{0}}^{2}+{q_{1}}^{2}-{q_{2}}^{2}-{q_{3}}^{2} } \end{bmatrix}\end{split}\]




Measurement Vector (:math:`vec{z}_{k}`)


The measurement vector, \(\vec{z}_{k}\) is comprised of position, velocity, and attitude
information as defined above.  It is formed from sensor measurements.  However, only the GPS
velocity is directly available from measurements; other information must be derived from sensor
readings using the relationships described below.




Roll and Pitch Measurements


Roll and pitch values are computed from the accelerometer signal.  Under static conditions,
measurements made by the accelerometer consists solely of gravity and sensor noise.  Along the axis
pointed in the direction of gravity, the sensor measures -1 [g].  This is due to the proof-mass
being pulled in the direction of gravity, which, in the absence of gravity, is equivalent to a
deceleration of 1 [g].


\[\vec{a}_{meas} = \vec{a}_{grav} = -\vec{g}\]

Static roll and pitch values are determined by noting that gravity is constant in the N-Frame
(perp-Frame):


\[\begin{split}\vec{g}^{N} = \vec{g}^{\perp} = \begin{Bmatrix} \begin{array}{c}
                                                                0 \\
                                                                0 \\
                                                                1
                                                \end{array}
                                \end{Bmatrix}\end{split}\]

and can be transformed into the body frame through \({^{B}{R}^{\perp}}\):


\[\begin{split}\vec{g}^{B} = {^{B}{R}^{\perp}} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \begin{Bmatrix} \begin{array}{c}
                                                                                                                0 \\
                                                                                                                0 \\
                                                                                                                1
                                                                                                \end{array}
                                                                                \end{Bmatrix}\end{split}\]

Using the definition of \({^{\perp}{R}^{B}}\) (discussed in
Attitude Parameters)
and expanding the equation, the accelerometer measurements can be related to roll and pitch angles:


\[\vec{g}^{B} = -\vec{a}_{meas}^{B}\]


\[\begin{split}\begin{Bmatrix} {
                \begin{array}{c}
                                {-sin \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix}}
                                \cr
                                {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot sin \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                                \cr
                                {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot cos \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                \end{array}
} \end{Bmatrix} = {
                    \begin{Bmatrix} {
                                    \begin{array}{c}
                                                    {-a}_{mx}^{B} \\
                                                    {-a}_{my}^{B} \\
                                                    {-a}_{mz}^B
                                    \end{array}
                    } \end{Bmatrix}
                }\end{split}\]

From this result, the angles corresponding to the accelerometer signal are found:


\[{^{\perp}}{\phi}{_{meas}^{B}} =atan2(-a_{my}^{B},-a_{mz}^{B} )\]


\[{^{\perp}}{\theta}{_{meas}^{B}}  =-asin(-\hat{a}_{mx}^{B} )\]

where, \(\hat{a}_{mx}^{B}\) is the x-axis acceleration value normalized by the total
acceleration magnitude:


\[\hat{a}_{mx}^{B} = { {a_{mx}^B} \over \| {\vec{a}_{meas}^{B}} \|}\]

Normalization of the y and z-axis accelerometer values can be performed.  However this is not
required as the \(atan\) function uses the ratio of the two (the normalization factor cancels
out).




Heading Measurements


Heading measurements are determined from one (or both) of the following:



	Magnetometers


	GPS Velocity










Magnetometer-Based Heading


Magnetometers measure the local magnetic field at a high DRs but the readings can be affected by
hard and soft-iron disturbances in the system or by changes in the external magnetic field.  Hard
and soft-iron effects are local to the system and can be accounted for; external field disturbances
cannot be corrected.

Adjustment of the magnetic field measurement for hard/soft-iron disturbances can be performed
according to the following equation:


\[\vec{m}_{corr}^{B} = R_{SI} \cdot S_{SI} \cdot {R_{SI}}^{T} \cdot (\vec{m}_{meas}^{B} - \vec{m}_{bias}^{B} - \vec{m}_{HI}^{B} )\]

where \(\vec{m}_{meas}^{B}\) is the measured magnetic field vector in the body-frame,
\(\vec{m}_{HI}^{B}\) is the hard-iron disturbance, and \(R_{SI}\) and \(S_{SI}\) are the
soft-iron disturbances.


Note

For this analysis the magnetometer bias is neglected; assumed to be negligible or lumped in
with the hard-iron.



Hard and soft-iron parameters are estimated by performing a magnetic-alignment maneuver.


Note

The application of these corrections do not adjust individual magnetometer channels to match
the actual field strength.  Only the relative magnetic field is corrected, resulting in a
unit-circle for the xy magnetic-field.  However, as shown later, this enables the heading to be
calculated from the corrected signal.






Heading calculation


The heading is computed using the fact that, in the magnetic NED-frame, the y-axis component of the
magnetic field is zero.  In the true-north NED-frame this is not the case; a magnetic declination
angle corrects for this.  The magnetic field at a given point can be found using the World Magnetic
Model (WMM) or from NOAA’s website (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm).  In San Jose,
CA, the magnetic field estimates are provided in Table:


[image: MagFieldStrength]

Magnetic Field Components based on WMM



Figure illustrates the relationship between the Lines of constant Lat/Lon, the NED-frame, and
the perp-frame.  Declination is specified with \(\delta\) and heading is specified with
\(\psi\).


[image: MagFieldNandBFrames]

Relationship of Magnetic-Field to N and B-Frames



The magnetic field vector, \(\vec{b}\), can be broken down into two components:



	the xy-plane component and


	the vertical component







The relationship between heading and magnetic field is based on the components of
\(\vec{b}^{N}\) as measured in the NED-frame:


\[\begin{split}\vec{b}^{\perp} = {^{\perp}{R}^{N}} \cdot \vec{b}^{N} = {^{\perp}{R}^{N}} \cdot \begin{Bmatrix} \begin{array}{c}
                                                                                                                b_{xy} \\
                                                                                                                0 \\
                                                                                                                b_{z}
                                                                                                \end{array}
                                                                                \end{Bmatrix}\end{split}\]

Expanding the expression results in the following:


\[\begin{split}\begin{Bmatrix} \begin{array}{c}
                                b_{x}^{\perp} \\
                                b_{y}^{\perp} \\
                                b_{z}^{\perp}
                \end{array}
\end{Bmatrix} = \begin{Bmatrix} \begin{array}{c}
                                                b_{xy} \cdot cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                                -b_{xy} \cdot sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                                b_{z}^{\perp}
                                \end{array}
                \end{Bmatrix}\end{split}\]

From this, the heading is computed:


\[tan{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } = { {b_{xy} \cdot \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} \over {b_{xy} \cdot \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} }
                                                        = { {-b_{y}^{\perp}} \over {b_{x}^{\perp}} }
                                                        = { {-m_{corr,y}^{\perp}} \over {m_{corr,x}^{\perp}} }\]


Note

The values for \(b_{x}^{\perp}\) and \(b_{y}^{\perp}\) are the corrected and ‘leveled’ values
of the measured magnetic-field in the body-frame; roll and pitch estimates are used to level
the signal via \({^{\perp}{R}_{pred}^{B}}\).




\[{\vec{m}_{corr}^{\perp}} = {^{\perp}{R}_{pred}^{B}} \cdot {\vec{m}_{corr}^{B}}\]


Note

As this calculation only corrects the magnetic-field in the xy body-frame, the heading solution
is best when the system is nearly level. he solution begins to degrade as the roll and pitch
increase.  This can be accounted for by adjusting the measurement covariance matrix, \(R\),
accordingly.  Additionally, the solution also begins to degrade as the iron in the system
increases.






GPS Heading


Heading is also provided directly from the GPS messages.  The four messages currently decoded by the
IMU381/OpenIMU firmware provide true heading via messages listed in Table.


GPS Messaging and Heading Measurement







	System

	Message

	Description

	Units





	NovAtel

	BESTVEL

	
Actual direction of motion over

ground (track over ground) with

respect to True North




	[deg]



	NMEA

	VTG

	True track made good

	[deg]



	SiRF

	
Geodetic Navigation

Data – Message ID 41




	
Course Over Ground

(COG, True)




	[deg x 100]



	ublox

	NAV-VELNED

	Heading of motion 2-D

	[deg]










Choosing the Heading Measurement Source

Deciding upon the source of the heading information is ultimately up to the user.  In the
Aceinna algorithm, the source switches from GPS to magnetometer based on the operating condition.
Specifically, during periods of motion, GPS measurements are used as the are considered more
accurate as they are not influenced by the magnetic environment.  However, when at rest the GPS
heading provides no heading information.  In this case, the magnetometer provides heading
information.

This implementation requires the algorithm to switch not only the source of the data but also the
related measurement covariance values.


GPS Position and Velocity

GPS-based position is derived from the GPS lat/lon/alt message (BestPos, GGA, etc) and converted to
NED-position using the WGS84 model.

GPS-based velocity is obtained from the BestVel, etc message.  However, the NMEA message does not
provide vertical velocity, derived from or accounted for in other ways.  In all cases the N and
E-velocity is calculated from heading and ground speed.  The relationship is:


\[ \begin{align}\begin{aligned}v_{N} = v_{XY} * \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\\v_{E} = v_{XY} * \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\end{aligned}\end{align} \]






          

      

      

    

  

    
      
          
            
  
Measurement Vector





Model Overview

It is possible to choose among various measurement models for a given EKF implementation.  The
particular model is selected based on many factors, one being the limitations of the available
measurements.  This formulation was selected due to the incomplete knowledge of the magnetic
environment of the system  and uses the available sensor information as follows:



	Accelerometers “level” the system (used to compute \({^{\perp}}{\phi}{_{meas}^{B}}\) and
\({^{\perp}}{\theta}{_{meas}^{B}}\)) FN


	Magnetometers and/or GPS heading information align the perp-frame with true or magnetic north
(\({^{N}}{\psi}{^{\perp}}\))


	GPS position and velocity measurements update the position and velocity estimates
(\(\vec{r}^{N}\) and \(\vec{v}^{N}\))







Based upon these steps, the measurement vector, \(\vec{z}_{k}\), is formed:


\[\vec{z}_{k} = {
                \begin{Bmatrix} {
                                  \begin{array}{c}
                                                   {\vec{r}_{GPS}^{N}}
                                                   \cr
                                                   {\vec{v}_{GPS}^{N}}
                                                   \cr
                                                   {^{N}}{\vec{\Theta}}{_{meas}^{B}}
                                  \end{array}
                } \end{Bmatrix}
              }\]

with the corresponding measurement model, \(\vec{h}_{k}\):


\[\vec{h}_{k} = {
                \begin{Bmatrix} {
                                  \begin{array}{c}
                                                   {\vec{r}_{pred}^{N}}
                                                   \cr
                                                   {\vec{v}_{pred}^{N}}
                                                   \cr
                                                   {^{N}}{\vec{\Theta}}{_{pred}^{B}}
                                  \end{array}
                } \end{Bmatrix}
              }\]

Both \({^{N}}{\vec{\Theta}}{_{meas}^{B}}\) and \({^{N}}{\vec{\Theta}}{_{pred}^{B}}\) are
3x1 column vectors containing the roll, pitch, and heading values. FN



Measurement Vector (\(\vec{z}_{k}\))

The measurement vector, \(\vec{z}_{k}\) is comprised of position, velocity, and attitude
information as defined above.  It is formed from sensor measurements:.  However, only the GPS
velocity is available directly from measurements; other information must be derived from sensor
readings using the relationship described below.


Roll and Pitch Measurements

Roll and pitch values are computed from the accelerometer signal.  Under static conditions,
measurements made by the accelerometer consists solely of gravity and sensor noise.  Along the axis
pointed in the direction of gravity, the sensor measures -1 [g].  This is due to the proof-mass
being pulled in the direction of gravity, which is equivalent to a deceleration of 1 [g] in the
absence of gravity.


\[\vec{a}_{meas} = \vec{a}_{grav} = -\vec{g}\]

Static roll and pitch values are determined by noting that gravity is constant in the N-Frame
(perp-Frame):


\[\begin{split}\vec{g}^{N} = \vec{g}^{\perp} = \begin{Bmatrix} { 0 \\
                                              0 \\
                                              1
                             } \end{Bmatrix}\end{split}\]

and can be transformed into the body frame through \({^{B}{R}^{\perp}}\):


\[\begin{split}\vec{g}^{B} = {^{B}{R}^{\perp}} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \begin{Bmatrix} { 0 \\
                                                                                              0 \\
                                                                                              1
                                                                            } \end{Bmatrix}\end{split}\]

Using the definition of \({^{\perp}{R}^{B}}\) (discussed in
Attitude Parameters)
and expanding the equation, the accelerometer measurements can be related to roll and pitch angles:


\[\vec{g}^{B} = -\vec{a}_{meas}^{B}\]


\[\begin{split}\begin{Bmatrix} {
                  \begin{array}{c}
                                   {-sin \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix}}
                                   \cr
                                   {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot sin \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                                   \cr
                                   {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot cos \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                  \end{array}
} \end{Bmatrix} = {
                    \begin{Bmatrix} {
                                      \begin{array}{c}
                                                       {-a}_{mx}^{B} \\
                                                       {-a}_{my}^{B} \\
                                                       {-a}_{mz}^B
                                      \end{array}
                    } \end{Bmatrix}
                  }\end{split}\]

From this result, the angles corresponding to the accelerometer signal are found:


\[{^{\perp}}{\phi}{_{meas}^{B}} =atan2(-a_{my}^{B},-a_{mz}^{B} )\]


\[{^{\perp}}{\theta}{_{meas}^{B}}  =-asin(-\hat{a}_{mx}^{B} )\]

where, \(\hat{a}_{mx}^{B}\) is the x-axis acceleration value normalized by the total
acceleration magnitude:


\[\hat{a}_{mx}^{B} = { {a_{mx}^B} \over \| {\vec{a}_{meas}^{B}} \|}\]

Normalization of the y and z-axis accelerometer values can be performed.  However this is not
required as the \(atan\) function uses the ratio of the two (the normalization factor cancels
out).



Heading Measurements

Heading measurements are determined from the following:



	Magnetometers


	GPS Velocity








Magnetometer-Based Heading

Magnetometers measure the local magnetic field at a high DRs but the readings can be affected by
hard and soft-iron disturbances in the system or by changes in the external magnetic field.  Hard
and soft-iron effects are local to the system and can be accounted for; external field disturbances
cannot be corrected.

Adjustment of the magnetic field measurement for hard/soft-iron disturbances can be performed
according to the following equation:


\[\vec{m}_{corr}^{B} = R_{SI} \cdot S_{SI} \cdot {R_{SI}}^{T} \cdot (\vec{m}_{meas}^{B} - \vec{m}_{bias}^{B} - \vec{m}_{HI}^{B} )\]

where \(\vec{m}_{meas}^{B}\) is the measured magnetic field vector in the body-frame,
\(\vec{m}_{HI}^{B}\) is the hard-iron disturbance, and \(R_{SI}\) and \(S_{SI}\) are the
soft-iron disturbances.  Note: for this analysis the magnetometer bias is neglected; assumed to be
negligible or lumped in with the hard-iron.

Hard and soft-iron parameters are estimated by performing a magnetic-alignment maneuver.  Note that
the application of these corrections do not adjust individual magnetometer channels to match the
actual field strength.  Only the relative magnetic field is corrected, resulting in a unit-circle
for the xy magnetic-field.  However, as shown later, this enables the heading to be calculated from
the corrected signal.


Heading calculation

The heading is computed using the fact that, in the magnetic NED-frame, the y-axis component of the
magnetic field is zero.  In the true-north NED-frame this is not the case; a magnetic declination
angle corrects for this.  The magnetic field at a given point can be found using the World Magnetic
Model (WMM) or from NOAA’s website (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm).  In San Jose,
CA, the magnetic field estimates are provided in Table 4:


[image: MagFieldStrength]

Table 4: Magnetic Field Components based on WMM



Figure 4 illustrates the relationship between the Lines of constant Lat/Lon, the NED-frame, and
the perp-frame.  Declination is specified with \(\delta\) and heading is specified with
\(\psi\).


[image: MagFieldNandBFrames]

Figure 4: Relationship of Magnetic-Field to N and B-Frames



The magnetic field vector, \(\vec{b}\), can be broken down into two components:



	the xy-plane component and


	the vertical component







The relationship between heading and magnetic field is based on the components of
\(\vec{b}^{N}\) as measured in the NED-frame:


\[\begin{split}\vec{b}^{\perp} = {^{\perp}{R}^{N}} \cdot \vec{b}^{N} = {^{\perp}{R}^{N}} \cdot \begin{pmatrix} { b_{xy} \\
                                                                                       0 \\
                                                                                       b_{z}
                                                                     } \end{pmatrix}\end{split}\]

Expanding the expression results in the following:


\[\begin{split}\begin{Bmatrix} { b_{x}^{\perp} \\
                  b_{y}^{\perp} \\
                  b_{z}^{\perp}
} \end{Bmatrix} = \begin{Bmatrix} {  b_{xy} \cdot cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                    -b_{xy} \cdot sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                     b_{z}^{\perp}
                  } \end{Bmatrix}\end{split}\]

From this, the heading is computed:


\[tan{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } = { {b_{xy} \cdot \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} \over {b_{xy} \cdot \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} }
                                                          = { {-b_{y}^{\perp}} \over {b_{x}^{\perp}} }
                                                          = { {-m_{corr,y}^{\perp}} \over {m_{corr,x}^{\perp}} }\]

Note: the values for \(b_{x}^{\perp}\) and \(b_{y}^{\perp}\) are the corrected and ‘leveled’ values
of the measured magnetic-field in the body-frame; roll and pitch estimates are used to level the
signal via \({^{\perp}{R}_{pred}^{B}}\).


\[{\vec{m}_{corr}^{\perp}} = {^{\perp}{R}_{pred}^{B}} \cdot {\vec{m}_{corr}^{B}}\]

Note: as this calculation only corrects the magnetic-field in the xy body-frame, the heading
solution is best when the system is nearly level. he solution begins to degrade as the roll and
pitch increase.  This can be accounted for by adjusting the measurement covariance matrix,
\(R\), accordingly.  Additionally, the solution also begins to degrade as the iron in the system
increases.




GPS Heading

Heading is also provided directly from the GPS messages.  The four messages currently decoded by the
IMU381/OpenIMU firmware provide true heading via messages listed in Table 6.


Table 6: GPS Messaging and Heading Measurement







	System

	Message

	Description

	Units





	NovAtel

	BESTVEL

	
Actual direction of motion over

ground (track over ground) with

respect to True North




	[deg]



	NMEA

	VTG

	True track made good

	[deg]



	SiRF

	
Geodetic Navigation

Data – Message ID 41




	
Course Over Ground

(COG, True)




	[deg x 100]



	ublox

	NAV-VELNED

	Heading of motion 2-D

	[deg]






of the PS  readings  and angles derived from accelerometer readings (equations provided in
Measurement Covariance section):




GPS Position and Velocity

GPS-based position is derived from the GPS lat/lon/alt message (BestPos, GGA, etc) and converted to
NED-position using the WGS84 model.

GPS-based velocity is obtained from the BestVel, etc message.  However, the NMEA message does not
provide vertical velocity, derived from or accounted for in other ways.  In all cases the N and
E-velocity is calculated from heading and ground speed.  The relationship is:


\[ \begin{align}\begin{aligned}v_{N} = v_{XY} * \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\\v_{E} = v_{XY} * \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\end{aligned}\end{align} \]






          

      

      

    

  

    
      
          
            
  
Process Models


Introduction

As the state-transition model is nonlinear, the state-transition vector cannot be directly used to
propagate the covariance forward in time.  Instead the state-transition vector, \(\vec{f}\), is
linearized based on the current system states and used for this task.  The resulting linearization
(computed from the partial derivatives of \(\vec{f}\) with respect to the system states,
\(\vec{x}\)) generates a matrix referred to as the Process Jacobian, \(F\).  This matrix is
used to propagate the covariance, \(P\), forward in time.

The covariance estimate is also affected by the process noise, which is related to sensor-noise
levels.  The more process noise that exists in a system, the larger the covariance estimate will be
at the next time step.  This noise is reflected in the process-noise covariance matrix, \(Q\).

Formulation of these matrices are described in the following sections.



Individual Process Models



	Process Jacobian

	Process Noise Covariance Matrix









          

      

      

    

  

    
      
          
            
  
Process Noise Covariance Matrix

The process covariance acts as a weighting matrix for the system process.  It relates the covariance
between the \(i^{th}\) and \(j^{th}\) element of each process-noise vector.  It is defined
as:


\[\Sigma_{ij} = cov{ \begin{pmatrix} {
                                     \vec{x}_{i},\vec{x}_{j}
                   } \end{pmatrix}
                 }
            = E{ \begin{bmatrix} {
                                   { \begin{pmatrix} { \vec{x}_{i}-\mu_{i} } \end{pmatrix} }
                                   \cdot
                                   { \begin{pmatrix} { \vec{x}_{j}-\mu_{j} } \end{pmatrix} }
                 } \end{bmatrix}
               }\]

A Kalman Filter can be viewed the combination of Gaussian distributions to form state estimates.
\(Q\) provides a measure of the width of the Gaussian distribution related to each noise state.
The wider the distribution, the more uncertainty exists in the process model.  This leads to a
state-update that affects the state more than if the model had a tighter distribution, which results
in an update having less influence on the particular state.

Based on the state process-noise vectors, \(\vec{w}_{k}\) (found in previous sections), the
Process Noise Covariance Matrix is:


\[Q_{k} = {
               \begin{bmatrix} {
                                 \begin{array}{ccccc}
                                                      {\Sigma_{r}} &
                                                      {0_{3}} &
                                                      {0_{3 \times 4}} &
                                                      {0_{3}} &
                                                      {0_{3}}
                                                      \cr
                                                      {0_{3}} &
                                                      {\Sigma_{v}} &
                                                      {0_{3 \times 4}} &
                                                      {0_{3}} &
                                                      {0_{3}}
                                                      \cr
                                                      {0_{4 \times 3}} &
                                                      {0_{4 \times 3}} &
                                                      {\Sigma_{q}} &
                                                      {0_{4 \times 3}} &
                                                      {0_{4 \times 3}}
                                                      \cr
                                                      {0_{3}} &
                                                      {0_{3}} &
                                                      {0_{3 \times 4}} &
                                                      {\Sigma_{\omega b}} &
                                                      {0_{3}}
                                                      \cr
                                                      {0_{3}} &
                                                      {0_{3}} &
                                                      {0_{3 \times 4}} &
                                                      {0_{3}} &
                                                      {\Sigma_{ab}}
                                 \end{array}
                 } \end{bmatrix}
               }\]

The individual process covariance are repeated here:


\[\Sigma_{r} = {\begin{pmatrix} { \sigma_{a} \cdot {dt}^{2} } \end{pmatrix}}^{2} \cdot I_3\]


\[\Sigma_{v} = {\begin{pmatrix} { \sigma_{a} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]


\[\Sigma_{q} = { { \begin{pmatrix} {
                                   {\sigma_{\omega} \cdot dt } \over {2}
                 } \end{pmatrix} }^{2}
             }
             \cdot
             {
               \begin{bmatrix} {
                                 \begin{array}{cccc}
                                                       {1 - q_0^2} &
                                                       {-{q_0 \cdot q_1}} &
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_0 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_1}} &
                                                       {1 - q_1^2} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {-{q_1 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {1 - q_2^2} &
                                                       {-{q_2 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_3}} &
                                                       {-{q_1 \cdot q_3}} &
                                                       {-{q_2 \cdot q_3}} &
                                                       {1 - q_3^2}
                                 \end{array}
                 } \end{bmatrix}
               }\]


\[\Sigma_{\omega b} = {\begin{pmatrix} { \sigma_{dd,\omega} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]


\[\Sigma_{ab} = {\begin{pmatrix} { \sigma_{dd,a} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]




          

      

      

    

  

    
      
          
            
  
Process Jacobian

As the system is nonlinear, the vector \(\vec{f}\) cannot be used to propagate the covariance
matrix, \(P\).  Instead the Process Jacobian, \(F\), (a linearized version of the
state-transition vector) is computed at each time step (based on the current system states) to
propagate \(P\) forward in time:


\[F_{k-1} = \left.{ {\partial{\vec{f}}} \over {\partial{\vec{x}}} }\right|_{\vec{x}_{k-1},\vec{u}_{k-1}}\]

This requires taking the derivative of each state-equation with respect to each state.  Each row of
the Jacobian corresponds to a specific state-equation; each column of the matrix corresponds to a
specific system state.  Performing this operation results in:


\[F = I_{16} + {
               \begin{bmatrix} {
                                 \begin{array}{ccccc}
                                                     {0_{3}} &
                                                     {I_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {\partial{v}\partial{q}} &
                                                     {0_{3}} &
                                                     {-{^{N}{R}^{B}}}
                                                     \cr
                                                     {0_{4 \times 3}} &
                                                     {0_{4 \times 3}} &
                                                     {{{1} \over {2}} \cdot \Omega} &
                                                     {-{{1} \over {2}} \cdot \Xi} &
                                                     {0_{4 \times 3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                 \end{array}
               } \end{bmatrix}
             } \cdot {dt}\]

The one new term in the matrix, \({\partial{v}\partial{q}}\) is defined as:


\[{\partial{v}\partial{q}} \equiv {
                                  2 \cdot \overline{Q}_{F} \cdot { \begin{bmatrix} {
                                                                                     \begin{array}{cc}
                                                                                                         {0} &
                                                                                                         {\begin{pmatrix} { {\vec{a}^{B}} } \end{pmatrix} ^{T}}
                                                                                                         \cr
                                                                                                         {\vec{a}^{B}} &
                                                                                                         {-\begin{bmatrix} { {\vec{a}^{B}} \times } \end{bmatrix}}
                                                                                     \end{array}
                                                                   } \end{bmatrix}
                                                                 }
                                }\]

where \(\overline{Q}_{F}\) is:


\[\begin{split}\overline{Q}_{F} &= {
                      \begin{bmatrix} {
                                        \begin{array}{cccc}
                                                            {q_{1}} &
                                                            {q_{0}} &
                                                            {-q_{3}} &
                                                            {q_{2}}
                                                            \cr
                                                            {q_{2}} &
                                                            {q_{3}} &
                                                            {q_{0}} &
                                                            {-q_{1}}
                                                            \cr
                                                            {q_{3}} &
                                                            {-q_{2}} &
                                                            {q_{1}} &
                                                            {q_{0}}
                                        \end{array}
                      } \end{bmatrix}
                    } \\
                    {\hspace{5mm}} \\
                 &= {
                      \begin{bmatrix} {
                                        {\vec{q}_{v}} \hspace{5mm} {q_0 \cdot I_{3} + \begin{bmatrix} { {\vec{q}_{v}} \times } \end{bmatrix}}
                      } \end{bmatrix}
                    }\end{split}\]

and


\[\vec{a}^{B} = \vec{a}_{meas}^{B} - \vec{a}_{bias}^{B}\]




          

      

      

    

  

    
      
          
            
  
GNSS RTK/IMU Loosely Coupled Integration

The GNSS RTK/IMU algorithms includes:



	Sensors

	Kalman Filter

	State Transition Models

	Process Models

	Measurement Model

	Measurement Vector

	Innovation / Measurement Error











          

      

      

    

  

    
      
          
            
  
RTK Robust Extended Kalman Filter

Robust extended kalman filter is an optimal autoregressive algorithm for solving discrete data.
It takes the observed signal as the parameter of the state equation, and the observed noise is
Gaussian white noise, and calculates predicted value. EKF is a recursive filtering method which proposed
base on probability theory and mathematical statistics. This method has a small calculation and powerful
functions, and is convenient for processing real-time data. It is widely used in satellite navigation and
positioning, aircraft control, and other fields.


State models


\[X_{k,k-1}=\Phi_{k,k-1}X_{k-1}+\Gamma_kW_k\]

Where: \(X_{k,k-1}\) is a vector representing the parameter to be estimated at \(k\) time;
\(\Phi_{k,k-1}\) is a state transition matrix representing the state of the system from \(k-1\) time to \(k\) time;
which is a non-singular unit matrix; \(\Gamma_k\) is a noise drive matrix and \(W_k\) is a system noise matrix.



Observation models


\[L_k = H_kX_k + Z_k\]

Where:\(H_k\) is a coefficient matrix of observed equations; \(L_k\) is a vector of observations;
\(Z_k\) representing a residual of observed equations .

When state systems and observation models are used to describe the system, it is usually assumed
that the observed values are independent of each other, the system noise and the observed noise are
independent of each other, and obey the Gaussian white noise with zero mean, that is,


\[\begin{split}\left\{
\begin{aligned}
& E\{U_k\} = E\{V_k\} = E\{U_k \cdot V_j^T\} = 0 \\
& E\{U_k \cdot U_j^T\} = \begin{cases} Q_k, j=k \\ 0, j \ne k\end{cases}\\
& E\{V_k \cdot V_j^T\} = \begin{cases} R_k, j=k \\ 0, j \ne k\end{cases}
\end{aligned}
\right.\end{split}\]

The Kalman filter solution process is divided into prediction process, filtering gain, and estimated
value calculation. The calculation is as follows:



1. Prediction process

Firstly, Calculating the current predicted value based on the filtered value at the previous epoch:


\[X_{k,k-1} = \Phi_{k,k-1}X_{k-1}\]

Calculating the prediction values based on the error variance matrix and Gaussian white noise with
the previous epoch:


\[P_{k,k-1} = \Phi_{k,k-1}P_{k-1}\Phi_{k,k-1}^T + Τ_kQ_kT_k^T\]



2. Calculating the filter gain

The so-called filter gain is to calculate the weight of the estimated variance in the total variance
(estimated variance and observed variance). The formula is as follows:


\[K_k = P_{k,k-1}H_k^T(H_kP_{k,k-1}H_k^T +R_k)^{-1}\]



3. Calculating the filter estimates

Calculating filter estimate values of \(k\) epoch:


\[X_k = X_{k,k-1} + K_k(L_k - H_kX_{k,k-1})\]

Calculating the error matrix of the filter estimate values:


\[P_k = P_{k,k-1}(E-K_kH_k)\]

Where: \(E\) Represents the unit matrix.

From the above process, it can be seen that Kalman filter is a process of continuous prediction and
correction. Each calculation only needs the observation value at the last epoch. The calculation is
simple and does not need to store a large amount of data, which is conducive to real-time estimation.



Extended Kalman Filter Model in Relative Positioning

Because the original observations include three types of observations: pseudorange, carrier, and
doppler shift, filtering and solving the three observations separately can greatly reduce the
dimension of the matrix, reducing the amount of calculation and the calculation space.

Updating the observation equation to obtain the updated position velocity and time information as
initial values, and then perform observation updates.

First, filter calculations are performed on the pseudorange. The observation equation is as follows:


\[Z_k = L_k - H_kX_k\]

Where:


\[Z_k = \Delta P - (\Delta \rho + \Delta tro)\]

The \(\Delta P\) matrix represents the single-difference pseudorange observations between rover station
and base station; the \(\Delta \rho\) matrix represents the initial single-difference results of
geometric-range; and the \(\Delta tro\) represents the single-difference values of tropospheric.

The coefficient matrix is:


\[H_k = \begin{bmatrix}\partial{X} & \partial{Y} & \partial{Z} & O & O & O & O & O & O & O & I & E \end{bmatrix}\]

Where: \(\partial X\) is the unit vector of geometric-range in the \(X\) direction; \(\partial Y\) is the
unit vector of geometric-range in the \(Y\) direction; \(\partial Z\) is the unit vector of geometric-range
in the \(Z\) direction; \(I\) is the unit column vector; and \(E\) is the unit matrix which can be calculated
according to the system of observations and the frequency.

Parameters to be evaluated:


\[X_k = \begin{bmatrix}dX & dY & dZ & dV_X & dV_Y & dV_Z & da_X & da_Y & da_Z & cdt_r & cdt_{bias}\end{bmatrix}\]

Where: \(dX, dY, dZ\) distribution indicates the correction values of \(X\), \(Y\), and \(Z\) axes;
\(dV_X\), \(dV_Y\), \(dV_Z\) is corresponding speed correction value; and \(da_X\), \(da_Y\), \(da_Z\)
is corresponding acceleration correction value. \(cdt_r\) is the clock drift; \(cdt_{bias}\) is the clock error bias matrix.
Different systems and different frequency parameters are inconsistent, The first parameter is the
single-difference clock error of GPS L1.

Furthermore, filtering calculation is performed on the doppler observation equation, and the
parameter \(X_k\) to be estimated is the same as the pseudorange observation equation


\[Z_k = \lambda D - (\dot \rho - c{\dot{t}}^j)\]

In the formula, \(D\) is the doppler frequency observation matrix, \(\lambda\) is the corresponding
carrier wavelength; \(\dot \rho\) is the rate of change of geometric-range; \(c\) is the speed of light;
and \({\dot{t}}^j\) is the clock drift of the satellite.

The coefficient matrix is:


\[H_k = \begin{bmatrix}O & O & O & \partial X & \partial Y & \partial Z & O & O & O & I\end{bmatrix}\]

Finally, calculating the carrier observation equation. In addition to the parameters in the
pseudorange model, the parameters to be estimated also added ambiguity parameters. The ambiguity
parameters are divided into two parts. The first part is the single-difference ambiguity \(\Delta N_{ref}\)
of the reference satellite. The second part is the double-difference ambiguity of the observation
satellite \(\Delta \nabla N_{rov}\). The expression of the parameter to be evaluated is as follows:


\[X_k = \begin{bmatrix}dX&dY&dZ&dV_X&dV_Y&dV_Z&da_X&da_Y&da_Z&cdt_r&cdt_{bias}&\Delta N_{ref}&\Delta \nabla N_{rov}\end{bmatrix}\]

The carrier observation equation is:


\[Z_k = \Delta \phi - (\Delta \rho + \Delta tro + ct_i) / \lambda\]

In the formula, \(\Delta \phi\) represents the single difference observation value of carrier; and
\(ct_i\) represents the single difference clock error of the receiver, which is calculated according
to \(cdt_{bias}\).

For observation satellites, the single-difference ambiguity:


\[\Delta N_{rov} = \Delta N_{rov} - \Delta N_{ref} + \Delta N_{ref} = \Delta \nabla N_{rov} + \Delta N_{ref}\]

Therefore, the corresponding coefficient matrix is:


\[\begin{split}H_k = \begin{bmatrix}\partial X & \partial Y & \partial Z & O & O & O & O & O & O & O & O & E & O \\
\partial X & \partial Y & \partial Z & O & O & O & O & O & O & O & O & E & E\\ \end{bmatrix}\end{split}\]

According to the above three sets of observations, the observations are updated separately, and
finally the high-precision position velocity and time information are calculated.
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Rate and Acceleration Bias State-Transition Models

The process models for the bias terms are based on the assumption that bias is made up of two
components:



	A constant bias offset (\(\vec{\omega}_{offset}^{B}\))


	A randomly varying component superimposed on the offset
(\(\vec{\omega}_{drift}^{B}\)) based on the measured bias-instability value of the sensor







For the rate-sensor, the bias model is


\[\vec{\omega}_{bias}^{B} = \vec{\omega}_{offset}^{B} + \vec{\omega}_{drift}^{B}\]

The drift model follows a random-walk process1, i.e. the drift value wanders according
to a Gaussian distribution.


\[\vec{\omega}_{drift,k}^{B} = \vec{\omega}_{drift,k-1}^{B} + \dot{\vec{\omega}}_{drift,k-1}^{B} \cdot dt\]

where


\[\dot{\vec{\omega}}_{drift,k-1}^{B} = N \begin{pmatrix} { 0,\sigma_{dd,\omega}^{2} } \end{pmatrix}\]


Note

The subscript dd stands for “drift-dot”.



Based on this model, the process variance for \(\vec{\omega}_{drift}^{B}\) at time, t, is given
by:


\[\sigma_{d,\omega}^{2}(t) = \begin{bmatrix} { (\sigma_{dd,\omega} \cdot \sqrt{dt}) \cdot \sqrt{t} } \end{bmatrix} ^{2}\]

An empirical study related \(\sigma_{dd,\omega}\) to the BI and ARW values as follows:


\[\sigma_{dd,\omega} = {{2 \cdot \pi} \over {ln(2)}} \cdot {{{BI}^{2}} \over {ARW}}\]

To find the rate-bias process-noise covariance, set \(t = dt\) in the process-variance model
(above), resulting in:


\[\Sigma_{\omega b} = \sigma_{d,\omega}^{2} (dt) \cdot I_3 = {\begin{pmatrix} { \sigma_{dd,\omega} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]

The accelerometer drift model mirrors this formulation and results in:


\[\Sigma_{ab} = \sigma_{d,a}^{2} (dt) \cdot I_3 = {\begin{pmatrix} { \sigma_{dd,a} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]


	1

	This is not a perfect assumption as the output of the model is unbounded while the
actual process is not.








          

      

      

    

  

    
      
          
            
  
Position State-Transition Model

The position process model is based on the following first-order model:


\[\vec{r}_{k} = \vec{r}_{k-1} + \dot{\vec{r}}_{k-1} \cdot dt\]

where \(\dot{\vec{r}}_{k-1}\) is the estimated velocity state, \(\vec{v}_{k-1}\).
Substituting in the velocity term (including noise) results in:


\[\vec{r}_{k} = \vec{r}_{k-1} + \vec{v}_{k-1} \cdot dt + \vec{w}_{r,k-1}\]

\(\vec{w}_{r,k-1}\) is the process noise associated with the position state-transition model,
which is directly related to the velocity process noise:


\[\begin{split}\vec{w}_{r,k-1}     &= {\vec{w}_{v,k-1}} \cdot dt\\
                {\hspace{5mm}} \\
                &= {^{N}{R}_{k-1}^{B}} \cdot {\vec{a}_{noise}^{B}} \cdot {dt}^{2}\end{split}\]

Like the previous process models, this expression is used to compute the elements of the process
covariance matrix (Q) related to the position estimate:


\[\Sigma_{r} = {\vec{w}_{r,k-1}} \cdot {\vec{w}_{r,k-1}}^{T}\]

By making the assumption that all axes have the same noise characteristics
(\({\sigma_{a}}^{2}\)), \(\Sigma_{r}\) simplifies to:


\[\Sigma_{r} = ({\sigma_{a} \cdot dt}^{2} )^{2} \cdot I_3\]




          

      

      

    

  

    
      
          
            
  
Quaternion State-Transition Model

All state propagation equations used in this paper are based on the following Taylor-series
expansion:


\[\vec{x}_{k} = \vec{x}_{k-1} + \dot{\vec{x}}_{k-1} \cdot { {dt} \over {1!} } + \ddot{\vec{x}}_{k-1} \cdot { {dt}^2 \over {2!} } + \ldots\]

where terms higher than first-order are neglected.  For attitude, the quaternion is propagated
according to the expression:


\[\vec{q}_{k} \approx \vec{q}_{k-1} + \dot{\vec{q}}_{k-1} \cdot dt\]

where dt is the integration time-step (sampling interval) and \(\vec{q}_{k-1}\) is the
current estimate of system attitude.

The kinematical equation that describes the rate-of-change of the attitude quaternion,
\(\dot{\vec{q}}_{k-1}\), is a function of true angular velocity,
\(\vec{\omega}_{true}\), as follows:


\[\dot{\vec{q}}_{k-1} = { {1} \over {2} } \cdot \Omega_{true,k-1} \cdot \vec{{q}}_{k-1}\]

where \(\Omega_{true,k-1}\) is formed from the components of the angular rate vector,
\({\begin{pmatrix}{^{N}{\vec{\omega}_{true}}^{B}}\end{pmatrix}}^{B}\) and specifies the
angular-rate of the body relative to an inertially-fixed frame, measured in the body-frame.  As all
angular-rate measurements made with MEMS sensors are relative to the inertial-frame, the notation
is simplified to \({\vec{\omega}_{true}}^{B}\).


\[\vec{\omega}^{B} = { \begin{Bmatrix} {
                                         \begin{array}{c}
                                                  {\omega_{x}^{B}} \cr
                                                  {\omega_{y}^{B}} \cr
                                                  {\omega_{z}^{B}}
                                         \end{array}
                                     } \end{Bmatrix}
                   }\]

The quaternion propagation matrix, \(\Omega_{k-1}\), at time-step k-1 is:


\[\Omega_{k-1} = { \begin{bmatrix} {
                                   \begin{array}{cccc}
                                                       {0} &
                                                       {-\omega_{x,k-1}^{B}} &
                                                       {-\omega_{y,k-1}^{B}} &
                                                       {-\omega_{z,k-1}^{B}}
                                                       \cr
                                                       {\omega_{x,k-1}^{B}} &
                                                       {0} &
                                                       {\omega_{z,k-1}^{B}} &
                                                       {-\omega_{y,k-1}^{B}}
                                                       \cr
                                                       {\omega_{y,k-1}^{B}} &
                                                       {-\omega_{z,k-1}^{B}} &
                                                       {0} &
                                                       {\omega_{x,k-1}^{B}}
                                                       \cr
                                                       {\omega_{z,k-1}^{B}} &
                                                       {\omega_{y,k-1}^{B}} &
                                                       {-\omega_{x,k-1}^{B}} &
                                                       {0}
                                   \end{array}
                 } \end{bmatrix}
               }\]

where (as noted above) all the rate components are estimates of the “true” rate measurements.

From the above expressions, the full state-transition model for system-attitude is:


\[\vec{q}_{k} = \vec{q}_{k-1} + {{1} \over {2}} \cdot \Omega_{true,k-1} \cdot {\vec{q}}_{k-1} \cdot dt
            = { \begin{bmatrix} {
                                  I_4 + {{dt} \over {2}} \cdot \Omega_{true,k-1}
                } \end{bmatrix}
              } \cdot {\vec{q}}_{k-1}\]

To find the noise term in the state-transition model, \(\vec{w}_{q,k-1}\), expand the
expression for \(\Omega_{true,k-1}\) using the rate-sensor model described earlier to
explicitly show the constituent terms:


\[\Omega_{true,k-1} = \Omega_{meas,k-1} - \Omega_{bias,k-1} - \Omega_{noise,k-1}\]

Substitute this result into the expression for the attitude state-transition model:


\[\begin{split}\vec{q}_{k} &= { { \begin{bmatrix} {
                                     I_4 + {{dt} \over {2}} \cdot \begin{pmatrix} { \Omega_{meas,k-1} - \Omega_{bias,k-1} } \end{pmatrix}
                                     - {{dt} \over {2}} \cdot \Omega_{noise,k-1}
                   } \end{bmatrix}
                 } \cdot {\vec{q}}_{k-1}
               } \\
               {\hspace{5mm}} \\
            &= {
                 \Phi_{k-1} \cdot \vec{q}_{k-1} + \vec{w}_{q,k-1}
               }\end{split}\]

\(\Phi_{k-1}\) is the state-transition matrix, defined as:


\[\Phi_{k-1} \equiv I_4 + {{dt} \over {2}} \cdot \begin{pmatrix} { \Omega_{meas,k-1} - \Omega_{bias,k-1} } \end{pmatrix}\]

and \(\vec{w}_{q,k-1}\) is the quaternion process-noise vector:


\[\vec{w}_{q,k-1} = -{{dt} \over {2}} \cdot \Omega_{noise,k-1} \cdot \vec{q}_{k-1}\]


Note

In this expression, the components of \(\Omega_{noise}\) are the noise components of
the angular-rate signal, \(\sigma_{\omega}^{2}\).  This can be expressed in terms of the
sensor’s Angular Random Walk (ARW).



Recasting \(\vec{w}_{q,k-1}\), so the rate-sensor noise (\(\omega_{noise}^{B}\)) forms
the input vector, results in the final expression for the quaternion process-noise resulting from
rate-sensor noise:


\[\vec{w}_{q,k-1} = -{{dt} \over {2}} \cdot \Xi_{k-1} \cdot \vec{\omega}_{noise}^{B}\]

with the variable \(\Xi_{k-1}\) relating the change in process noise to system attitude


\[\begin{split}\Xi_{k-1} \equiv \begin{bmatrix} {
                                   \begin{array}{c}
                                                    {-\vec{q}_{v}^{T}} \\
                                                    {q_0 \cdot I_3 + \begin{bmatrix} {\vec{q}_{v} \times} \end{bmatrix}}
                                   \end{array}
                 } \end{bmatrix}\end{split}\]

and \(\begin{bmatrix} {\vec{q}_{v} \times} \end{bmatrix}\) is the cross-product matrix.

The quaternion process noise vector is used to form the elements of the process covariance
matrix (Q) related to the attitude state.  The covariance is computed according to the following
equation:


\[\Sigma_{ij} = cov \begin{pmatrix} {\vec{x}_{i}, \vec{x}_{j}} \end{pmatrix}
            = E \begin{bmatrix} {\begin{pmatrix} {\vec{x}_{i} - \mu_i} \end{pmatrix}
                                 \cdot
                                 \begin{pmatrix} {\vec{x}_{i} - \mu_j} \end{pmatrix}
                } \end{bmatrix}\]

As mentioned previously, all processes considered in this paper assume white (zero mean) sensor
noise that is uncorrelated across sensor channels.  This simplifies the expression for the
covariance to:


\[\Sigma_{q} = \vec{w}_{q,k-1} \cdot \vec{w}_{q,k-1}^{T}\]

In addition to the assumption that the noise terms are white and independent, all axes are assumed
to have the same noise characteristics (\(\sigma_{\omega}\)).  Resulting in the final expression
for \(\Sigma_{q}\):


\[\Sigma_{q} = { { \begin{pmatrix} {
                                   {\sigma_{\omega} \cdot dt } \over {2}
                 } \end{pmatrix} }^{2}
             }
             \cdot
             {
               \begin{bmatrix} {
                                 \begin{array}{cccc}
                                                       {1 - q_0^2} &
                                                       {-{q_0 \cdot q_1}} &
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_0 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_1}} &
                                                       {1 - q_1^2} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {-{q_1 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {1 - q_2^2} &
                                                       {-{q_2 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_3}} &
                                                       {-{q_1 \cdot q_3}} &
                                                       {-{q_2 \cdot q_3}} &
                                                       {1 - q_3^2}
                                 \end{array}
                 } \end{bmatrix}
               }\]




          

      

      

    

  

    
      
          
            
  
Velocity State-Transition Model

The velocity propagation equation is based on the following first-order model:


\[\vec{v}_{k} = \vec{v}_{k-1} + \dot{\vec{v}}_{k-1} \cdot dt\]

\(\dot{\vec{v}}_{k-1}\) is an estimate of system acceleration (linear-acceleration corrected for
gravity) and is formed from the accelerometer signal with estimated accelerometer-bias and gravity
removed.


\[\vec{a}_{motion,k-1} = \vec{a}_{meas,k-1} - \vec{a}_{bias,k-1} - \vec{a}_{grav}\]

Substituting this expression (along with the noise term) into the velocity propagation equation, and
explicitly stating the frames in which the readings are made, leads to:


\[\vec{v}_{k}^N = \vec{v}_{k-1}^N + \begin{pmatrix} {
                                                    \vec{a}_{motion,k-1}^N - {^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B}
                                  } \end{pmatrix} \cdot {dt}\]

where


\[\vec{a}_{motion,k-1}^N = {^{N}{R}_{k-1}^{B}} \cdot \begin{pmatrix} {
                                                                     \vec{a}_{meas,k-1}^B - \hat{a}_{bias,k-1}^B
                                                    } \end{pmatrix} - \vec{a}_{grav}^{N}\]

The velocity process-noise vector resulting from accelerometer noise is:


\[\vec{w}_{v,k-1}^{N} = -{^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B} \cdot {dt}\]

leading to the final formulation for the velocity state-transition model:


\[\vec{v}_{k}^N = \vec{v}_{k-1}^N + \vec{a}_{motion,k-1}^N \cdot dt + \vec{w}_{v,k-1}^{N}\]

The velocity process noise vector is used to compute the elements of the process covariance matrix
(\(Q\)) related to the velocity estimate, as follows:


\[\Sigma_{v} = {\vec{w}_{v,k-1}} \cdot {\vec{w}_{v,k-1}}^{T}\]

By making the assumption that all axes have the same noise characteristics
(\({\sigma_{a}}^{2}\)) and manipulating the expression, the result can be simplified to the
following:


\[\Sigma_{v} = { \begin{pmatrix} {
                                 \sigma_{a} \cdot dt
               } \end{pmatrix} }^{2} \cdot I_3\]




          

      

      

    

  

    
      
          
            
  
Sensors

Various sensors are used to obtain the information needed to estimate the position, velocity, and
attitude of a system (Table 2) .  Measurements from these sensors, taken
over time, are combined using an Extended Kalman Filter (EKF) to arrive at an estimates that are
more accurate or more timely than ones based on any single measurement.


Table 2: Inertial Sensors and Measurement Type






	Measurement

	Sensor

	Description





	Position

	
GPS













	
GPS provides position (Latitude/Longitude/Altitude) and

supplemental information (like standard deviation) to

the algorithm.  This is used to update the errors in the

position (integrated velocity) estimate.






	Velocity

	
1) Accelerometer

2) GPS



















	
Accelerometers provide the high DR/low-noise signal

that is integrated to get high DR velocity information.

GPS provides velocity and supplemental information to

the algorithm (velocity, heading, latency, etc), which is

used to update errors due to integration of the

accelerometer signal (in particular, to estimate the

accelerometer bias).






	Roll/Pitch

	
1) Angular-Rate


Sensor



2) Accelerometer













	
Angular-rate sensors provide the high DR/low-noise

signal that is integrated to get high DR attitude

information.  Accelerometers are used as a gravity

reference to update errors due to integration of the rate-

sensor signal (in particular, to estimate the rate-sensor

bias).






	Heading

	
1) Angular-Rate


Sensor



2) Magnetometer

3) GPS



















	
Angular-rate sensors provide the high DR/low-noise

signal that is integrated to get high DR heading

information.  Magnetometers are used as a north-

reference to update errors due to integration of the rate-

sensor signal (in particular, to estimate the z-axis rate-

sensor bias).  GPS also provides heading information,

which is used in lieu of magnetometer readings and can

be more accurate (less prone to disturbances) than the

magnetometer but available less often.









Other sensors, such as odometers, barometers, cameras, etc., may be incorporated into the EKF
formulation to get improved results.  However, incorporating data from any additional sensors would
require a reformulation of the algorithm presented here.

Inertial sensors measure the true motion and attitude of a system, corrupted by bias, noise, and
external influences.  For instance, the accelerometer signal is a combination of platform motion
and gravity1, as well as sensor bias and noise.  Simplified equations for the
three sensors are provided below:


\[\begin{split}\vec{\omega}_{meas} &= \vec{\omega}_{true} + \vec{\omega}_{bias} + \vec{\omega}_{noise}\\
{\hspace{5mm}} \\
\vec{a}_{meas} &= \vec{a}_{motion} + \vec{a}_{grav} + \vec{a}_{bias} + \vec{a}_{noise}\\
{\hspace{5mm}} \\
\vec{m}_{meas} &= \vec{b}_{motion} + \vec{m}_{bias} + \vec{m}_{noise}\end{split}\]

Items, such as misalignment, cross-coupling, etc. are ignored in this formulation they are
accounted for during system calibration.

Additionally, sensor bias can be broken down further.  In this paper, bias is modeled as a
constant offset plus random drift:


\[\vec{\omega}_{bias} = \vec{\omega}_{offset} + \vec{\omega}_{drift}\]

The magnetic field vector, \(\vec{b}\), may be corrupted by hard and soft-iron sources present in the
system in which the part is installed.  Hard and soft-iron effects can be estimated by performing
a “magnetic-alignment”2 procedure once installed in the end-user’s system.  The
equations relating the hard and soft-iron effects3 on the measured magnetic field
is:


\[\vec{m}_{meas} = {\begin{pmatrix} {R_{SI} \cdot S_{SI} \cdot {R_{SI}}^{T}} \end{pmatrix}}^{-1} \cdot \vec{b} + \vec{m}_{HI} + \vec{m}_{bias} + \vec{m}_{noise}\]

Where \(R_{SI}\) and \(S_{SI}\) represent the rotation and scaling of the magnetic-field, \(\vec{b}\), due to
soft-iron effects; \(\vec{m}_{HI}\) is the bias change in the magnetic-field due to hard-iron in the system.
Sensor gain is measured during the calibration process with the system at room temperature; it does
not vary much over temperature.  Sensor bias, however, is strongly linked to temperature.  The
calibration process measures bias over temperature (from -40° C to +85° C).  The temperature effect
on the magnetometer is “ratiometric”; the unitized magnetic-field vector is unaffected by
temperature.

Finally, and most importantly for the Extended Kalman Filter application, all sensor noise signals
are assumed to be white, Gaussian, stationary, and independent.  This implies that a sensor’s noise
characteristics are:



	zero-mean (\(\mu = 0\))


	distributed according to a normal distribution with variance \(\sigma^2\)


	constant over time (\(\sigma^2 \ne f(t)\))


	uncorrelated with other signals (\(E{ \begin{bmatrix} { {\begin{pmatrix} {\sigma_{\omega,x} - E[\sigma_{\omega,x}]} \end{pmatrix}} \cdot {\begin{pmatrix} {\sigma_{\omega,y} - E[\sigma_{\omega,y}]} \end{pmatrix}} } \end{bmatrix} } = 0\))







The formulation of the covariance matrices relies heavily on these assumption.


Note

The process-noise vectors, \(\vec{w}\), result from sensor noise transmission through the
individual state-transition models, described in the sections to come.




	1

	Due to the way the accelerometer measures acceleration, gravity appears like a
deceleration and, as such, \(\vec{a}_{grav} = -\vec{g}\).  This is
gravity deflecting the proof-mass in the direction of the gravity vector; such
a deflection caused solely by acceleration would require the body to accelerate
in the negative direction.



	2

	During a magnetic alignment maneuver, the magnetic measurements are recorded as the
system rotates (about its z-axis) through 360 deg.  Upon completion of the maneuver,
a best-fit ellipse is determined and used to model the hard and soft-iron
distortions in the system (described later).



	3

	In general you want the magnetic sensor to be in as magnetically clean a location
as possible.  Even by correcting for hard and soft-iron using this relationship,
large hard and soft-iron errors lead to progressively worse solutions.








          

      

      

    

  

    
      
          
            
  
State Transition Models


System State-Transition Model Summary1

The state-transition models form the core of the EKF prediction stage by performing the following
roles:



	They form the equations that propagate the system states from one time-step to the next
(using high-quality sensor as the input)


	They define the process-noise vectors relating each state to sensor noise


	They enable computation of the process covariance matrix, Q, and process Jacobian, F.  Both
are used to propagate the system covariance, P, from one time-step to the next.







The complete system state equation consists of 16 total states2


\[\begin{split}\vec{x} = {
            \begin{Bmatrix} {
                              \begin{array}{c}
                                               {\vec{r}^{N}} \\
                                               {\vec{v}^{N}} \\
                                               {{^N}\vec{q}{^B}} \\
                                               {\vec{\omega}_{bias}^{B}} \\
                                               {\vec{a}_{bias}^{B}}
                              \end{array}
            } \end{Bmatrix}
          }
        = {
            \begin{Bmatrix} {
                              \begin{array}{c}
                                               {\text{NED Position (3)}} \\
                                               {\text{NED Velocity (3)}} \\
                                               {\text{Body Attitude (4)}} \\
                                               {\text{Angular-Rate Bias (3)}} \\
                                               {\text{Accelerometer Bias (3)}}
                              \end{array}
            } \end{Bmatrix}
          }\end{split}\]

with the state-transition model, \(\vec{f}\), made up of five individual models (developed
in upcoming sections):


\[\vec{x}_{k} = \vec{f} { \begin{pmatrix} {
                                          \vec{x}_{k-1}, \hspace{2mm}
                                          \vec{u}_{k-1}
                                        }
                        \end{pmatrix} } + \vec{w}_{k-1}\]

where \(\vec{x}\) is the state-vector, \(\vec{u}\) is the input-vector (consisting of sensor
signals) and \(\vec{w}\) is the process-noise vector.

The expanded state-transition vector, \(\vec{f}\), is:


\[\begin{split}\vec{f} { \begin{pmatrix} {
                            \vec{x}_{k-1}, \hspace{2mm}
                            \vec{u}_{k-1}
          } \end{pmatrix} } = { \begin{Bmatrix} {
                                                  \begin{array}{c}
                                                                   {\vec{r}_{k-1}^{N} + \vec{v}_{k-1}^{N} \cdot dt} \\
                                                                   {\vec{v}_{k-1}^{N} + \begin{bmatrix} {
                                                                                                         {{{^N}{R}_{k-1}^{B}} \cdot \begin{pmatrix} {
                                                                                                                                    \vec{a}_{meas,k-1}^{B} - \hat{a}_{bias,k-1}^{B}
                                                                                                                    } \end{pmatrix} - \vec{a}_{grav,k-1}^{N}
                                                                                                         }
                                                                                        } \end{bmatrix}  \cdot dt
                                                                   } \\
                                                                   { \begin{bmatrix} {
                                                                                       I_4 + {{dt} \over {2}} \cdot \begin{pmatrix} { \Omega_{meas,k-1} - \Omega_{bias,k-1}
                                                                                               } \end{pmatrix}
                                                                     } \end{bmatrix} \cdot {^N}\vec{q}_{k-1}^{B}
                                                                   } \\
                                                                   {I_3} \\
                                                                   {I_3}
                                                  \end{array}
                                } \end{Bmatrix}
          }\end{split}\]

and the process-noise vector, \(\vec{w}_{k-1}\), is:


\[\begin{split}\vec{w}_{k-1} = { \begin{Bmatrix} {
                                    \begin{array}{c}
                                                     {-{^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B} \cdot {dt}^{2}} \\
                                                     {-{^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B} \cdot {dt}} \\
                                                     {-{{dt} \over {2}} \cdot \Xi_{k-1} \cdot {\vec{w}_{noise}^{B}}} \\
                                                     { \vec{N} \begin{pmatrix} {
                                                                                 0, \hspace{1mm}
                                                                                 \sigma_{dd,\omega}^{2}
                                                               } \end{pmatrix} } \\
                                                     { \vec{N} \begin{pmatrix} {
                                                                                 0, \hspace{1mm}
                                                                                 \sigma_{dd,a}^{2}
                                                               } \end{pmatrix} }
                                    \end{array}
                  } \end{Bmatrix}
                }\end{split}\]

The sensor noise vectors, \(\vec{N}\), corresponding to the angular-rate and accelerometer bias
states, are each 3x1 vectors with elements described by a zero-mean Gaussian distribution with a
variance of either \(\sigma_{dd,\omega}^{2}\) or \(\sigma_{dd,a}^{2}\).



Individual State-Transition Models

Individual state-transition models are derived in the following sections:



	Quaternion State-Transition Model

	Velocity State-Transition Model

	Position State-Transition Model

	Rate and Acceleration Bias State-Transition Models






	1

	There are many papers describing the derivation and implementation issues for EKFs
and Complementary-Filters.  Several of the papers similar to this implementation are
referenced in the Reference section.



	2

	GPS measurements are in latitude/longitude/altitude.  These are converted to position
in the Earth-frame, \(\vec{r}{^E}\).  Position in the NED-frame is calculated
from the initial starting point at system startup.  The state estimate is generated
by integrating velocity (estimated from accelerometer data).
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Formation of \(\vec{h}_{k}\) from EKF states:

In the measurement model \({\vec{h}_{k}}\), all terms are functions of the system states,
\({\vec{x}_k}\).  The position and velocity elements of this vector come directly from the
position and velocity states, while \({^{N}}{\Theta}{_{pred}^{B}}\) is computed from
\({^N}\vec{q}_{pred}^{B}\), as follows:


\[{^{⊥}{\phi}_{pred}^{B}} = atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{2} \cdot q_{3}+q_{0} \cdot q_{1}} \end{pmatrix},{q_{0}}^{2}-{q_{1}}^{2}-{q_{2}}^{2}+{q_{3}}^{2} } \end{bmatrix}\]


\[{^{⊥}{\theta}_{pred}^{B}} = -asin \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{3}-q_{0} \cdot q_{2}} \end{pmatrix} } \end{bmatrix}\]


\[{^{N}{\psi}_{pred}^{⊥}} = atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{2}+q_{0} \cdot q_{3}} \end{pmatrix},{q_{0}}^{2}+{q_{1}}^{2}-{q_{2}}^{2}-{q_{3}}^{2} } \end{bmatrix}\]

Observation Jacobian:

The Observation Jacobian, \(H\), is formulated from the measurement model, \(\vec{h}_{k}\).
The Observation Jacobian is a linearized version of the measurement model and is used to map the
measurements of \({^{⊥}{\phi}_{pred}^{B}}\), \({^{⊥}{\theta}_{pred}^{B}}\), and
\({^{N}{\psi}_{pred}^{⊥}}\) back to quaternion state, \({^N}{\vec{q}}_{pred}^{B}\), ensuring
the EKF applies the state updates properly.  The Observation Jacobian is computed as follows:


\[H_{k} = \left.{ {\partial{\vec{h}}} \over {\partial{\vec{x}}} }\right|_{\vec{x}_{k},\vec{u}_{k}}\]

and results in a matrix of the form:


\[\begin{split}H_{k} = \begin{bmatrix} { { I_3 \\
                            0_3 \\
                            0_3
                          } \hspace{5mm}
                           { 0_3 \\
                             I_3 \\
                             0_3
                           } \hspace{5mm}
                           { 0_{3 \times 4} \\
                             0_{3 \times 4} \\
                             {\partial{h}\partial{q}}
                           } \hspace{5mm}
                           { 0_3 \\
                             0_3 \\
                             0_3
                           } \hspace{5mm}
                           { 0_3 \\
                             0_3 \\
                             0_3
                           }
         } \end{bmatrix}\end{split}\]

where


\[\begin{split}{\partial{h}\partial{q}} = \begin{bmatrix} { H_{\phi} \\
                                             H_{\theta} \\
                                             H_{\psi}
                           } \end{bmatrix}\end{split}\]

The three terms that make up \({\partial{h}\partial{q}}\) are found using the chain-rule for differentiation.  For roll, the equation becomes:


\[H_{\phi} = {{\partial{^{⊥}{\phi}_{pred}^{B}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}
         = {{\partial{atan2 \begin{pmatrix} {y_{\phi}, x_{\phi}} \end{pmatrix}}} \over \partial{x_{\phi}}} \cdot {{\partial{x_{\phi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}} +
           {{\partial{atan2 \begin{pmatrix} {y_{\phi}, x_{\phi}} \end{pmatrix}}} \over \partial{y_{\phi}}} \cdot {{\partial{y_{\phi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}\]

and results in:


\[H_{\phi} = \begin{pmatrix} {
                             {2} \over {x_{\phi}^{2} + y_{\phi}^{2}}
           } \end{pmatrix} \cdot \begin{bmatrix} {
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{1} - y_{\phi} \cdot q_{0} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{0} + y_{\phi} \cdot q_{1} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{3} + y_{\phi} \cdot q_{2} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{2} - y_{\phi} \cdot q_{3} } \end{pmatrix} \hspace{5mm}
                                  } \end{bmatrix}\]


\[x_{\phi} = {q_{0}}^{2} - {q_{1}}^{2} - {q_{2}}^{2} + {q_{3}}^{2}\]


\[y_{\phi} = 2 \cdot \begin{pmatrix} { q_{2} \cdot q_{3}+q_{0} \cdot q_{1} } \end{pmatrix}\]

\(H_{\psi}\) follows the same formulation as \(H_{\phi}\):


\[H_{\psi} = {{\partial{^{⊥}{\psi}_{pred}^{B}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}
         = {{\partial{atan2 \begin{pmatrix} {y_{\psi}, x_{\psi}} \end{pmatrix}}} \over \partial{x_{\psi}}} \cdot {{\partial{x_{\psi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}} +
           {{\partial{atan2 \begin{pmatrix} {y_{\psi}, x_{\psi}} \end{pmatrix}}} \over \partial{y_{\psi}}} \cdot {{\partial{y_{\psi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}\]

resulting in:


\[H_{\psi} = \begin{pmatrix} {
                             {2} \over {x_{\psi}^{2} + y_{\psi}^{2}}
           } \end{pmatrix} \cdot \begin{bmatrix} {
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{3} - y_{\psi} \cdot q_{0} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{2} - y_{\psi} \cdot q_{1} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{1} + y_{\psi} \cdot q_{2} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{0} + y_{\psi} \cdot q_{3} } \end{pmatrix} \hspace{5mm}
                                  } \end{bmatrix}\]


\[x_{\psi} = {q_{0}}^{2} + {q_{1}}^{2} - {q_{2}}^{2} - {q_{3}}^{2}\]


\[y_{\psi} = 2 \cdot \begin{pmatrix} { q_{1} \cdot q_{2} + q_{0} \cdot q_{3} } \end{pmatrix}\]

Finally, for pitch the equation becomes:


\[H_{\theta} = {{\partial{^{⊥}{\theta}_{pred}^{B}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}
           = -{{\partial{asin \begin{pmatrix} {u_{\theta}} \end{pmatrix}}} \over \partial{u_{\theta}}} \cdot {{\partial{u_{\theta}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}\]

resulting in:


\[H_{\theta} = { { {2} \over \sqrt{ 1 - {u_{\theta}}^{2} } } \cdot { \begin{bmatrix} { {  q_{2} } \hspace{5mm}
                                                                                      { -q_{3} } \hspace{5mm}
                                                                                      {  q_{0} } \hspace{5mm}
                                                                                      { -q_{1} }
                                                                   } \end{bmatrix}
                                                                 }
             }\]


\[u_{\theta} = 2 \cdot \begin{pmatrix} {
                                       q_{1} \cdot q_{3} - q_{0} \cdot q_{2}
                     } \end{pmatrix}\]

eeeeee


{^{N}{R}_{k-1}^{B}}
:math:``
begin{pmatrix} {} end{pmatrix}

sin{ begin{pmatrix} { {^{N}{psi}^{⊥}} } end{pmatrix} }
cos{ begin{pmatrix} { {^{N}{psi}^{⊥}} } end{pmatrix} }




Innovation (Measurement Error):

Once the measurements vectors are formed, the innovation (measurement error), \(\vec{\nu}_{k}\),
is computed:


\[\vec{\nu}_{k} = \vec{z}_{k} - \vec{h}_{k}\]

This result is used in the update stage of the EKF to generate the state error,
\({\Delta\vec{x}}_{k}\), given the Kalman gain matrix.

Magnetometer vs GPS-Heading:

These are just notes right now and may go elsewhere in the doc (probably in implementation section)

How to combine \({^N}{\psi}_{meas,gps}^{⊥}\) and \({^N}{\psi}_{meas,mag}^{⊥}\)



	Don’t use \({^N}{\psi}_{meas,mag}^{⊥}\) if \({^N}{\psi}_{meas,gps}^{⊥}\)  is available


	Set \({\nu}_{\psi} = 0\) when GPS is valid and it is not time for a GPS update


	
	Create \(\Delta{^N}{\psi}_{meas,mag}^{⊥}\) and use it for updates between GPS updates

	What if we are turning?  The latency may make the GPS heading less than ideal and affect \(\Delta{^N}{\psi}_{meas,mag}^{⊥}\).







	
	For vel < thresh, use mag, else use gps

	For vel < thresh, lock the heading update












Measurement Covariance Values, R:

The measurement covariance is obtained in one of two ways:



	Value provided by the sensor (as for GPS messages)


	Calculated based on the underlying sensor noise







Setting this value properly is a key step toward a well-behaved EKF solution.  If the value of R is
too small the Kalman gain will be large, resulting in large EKF updates.  This may work well for a
static systems but will lead to errors in dynamic situations.  For example, when the Kalman gain is
large, a linear acceleration in the x-axis (even for a system that has not changed attitude) can be
misinterpreted as a change in the pitch.

Roll/Pitch Measurement Model and Covariance:

Static Case:

One way to determine the nominal (static) value for \(R\) is to simulate the sensor noise as it is
passed through the measurement model.  For the roll and pitch angle, the models that convert the
accelerometer signal to angles are simply the atan2 and asin functions.

Creating an accelerometer signal and passing it through the asin and atan2 functions reveal the
noise on the measurements (during static periods), see Appendix R.  Figure 5 and Figure 6 show
that the standard-deviation of the roll measurement is highly dependent on the pitch angle
\({^{⊥}{\theta}^{B}}\) while the pitch standard-deviation is constant for all roll and
pitch angles ().

Figure 5: Roll and Pitch Standard-Deviation due to Accelerometer Noise

Figure 6: Roll and Pitch Standard-Deviation as a function of \({^{⊥}{\theta}^{B}}\)

In addition to finding the nominal values for \({R}_{\phi}\) and \({R}_{\theta}\) under
level conditions (\({^{⊥}{\phi}^{B}} = {^{⊥}{\theta}^{B}}=0\)), the change in \({R}_{\phi}\)
for different \({^{⊥}{\theta}^{B}}\) should be accounted for as well.  The solution was found
to become unstable (solution walked off at large pitch angles) if the change in \({R}_{\phi}\)
vs \({^{⊥}{\theta}^{B}}\) was not implemented.

One final note: the values in Figure 5 and Figure 6 are standard-deviation values.  To form the
\(R\) matrix, the values must be squared as \(R\) is based on the signal’s variance.

Heading Covariance:

The values for \({R}_{\psi}\) can also be based on magnetometer noise levels but, if set too
low, external magnetic disturbances can quickly pull the heading away from the correct value.  An
empirical approach can also be used: selecting a value so sudden magnetic disturbances (such as a
large truck pulling up besides the test vehicle) do not result in sudden changes in heading.
However, this can also have the negative effect that errors in the magnetic heading take some time
to recover.  The second approach was taken to determine an acceptable value for
\({R}_{\psi,mag}\) when operating as an AHRS.

When heading is available from the GPS, this is not an issue and \({R}_{\psi,gps}\) can be
selected in a different manner.  As described in the BestVel GPS message description, direction
accuracy is inversely proportional to vehicle speed.  The faster the system is traveling, the better
‘the heading measurement.  This relationship can be used to set \({R}_{\psi,gps}\).

At slow speeds (or a stop), \({R}_{\psi,gps}\) will get very large.  Two approaches to deal with
these cases are to



	Implement a yaw-lock.  Prevent a yaw update during these periods.


	Use the magnetometer solution at speeds below a certain threshold







Dynamic Case:

To find the appropriate \(R\)-values, a Monte-Carlo approach was used.  For the …

Aided VG-Solution

Implementation

One of the challenges in implementing the Extended Kalman Filter comes from determining the quality
of the measurement and setting the measurement covariance, \(R\), appropriately.  As mentioned
previously, roll and pitch measurements are nominally computed from static accelerometer noise
levels.  However, when the system is moving, the accelerometer signal may also contains linear and
centripetal acceleration components (as well as system vibrations).  These components distort the
gravity measurement and affect the roll and pitch estimates as the system does not know if the
measured angles are changing due to a change in attitude (gravity) or a linear acceleration.

In practice, discerning between the gravity and motion (and adjusting \(R\) accordingly) has the
potential to improve the attitude results.  In this case, adjusting the value of \(R\) during
acceleration periods (increasing the value) reduces the effect of the acceleration on the state
update.  When the system returns to a static (non-accelerating) state, the value of \(R\) can be
reduced to the nominal value, which results in a higher Kalman gain  and more aggressive updates.

A simple approach to implementing this is to compare the magnitude of the accelerometer signal
against the expected magnitude of gravity.  When an appreciable difference is detected (more than
typical sensor/system noise would cause), the value of \(R\) is increased.  When the difference
is removed, the value of \(R\) is restored.  While simple in theory, this is more difficult in
practice.  Why?  To avoid single point errors (mitigated by using the signal only after a certain
amount of time elapses).  To ensure the gain drops before the measurement is used (filter properly).

Other things to improve performance:


1) Limit the innovation error, \(\vec{\nu}_{k}\).  This reduces the error going into the EKF
Update resulting in smaller state updates.  Setting the error limit this way is justified as the
errors are typically only large during periods of acceleration, which are erroneous anyway.

2) Change R based on the quality of the measurement.  Some measurements (particularly GPS
measurements) are provided along with a measure of their variance.  When available, these values
can be used to adjust \(R\).  Other measurements do not provide this information and the
user is left to set \(R\) based on intuition or simulation.  For instance, as mentioned
above, \(\phi\) and \(\theta\) are affected by acceleration; \({R}_{\phi}\) and
\({R}_{\theta}\) should be increased during these periods.  \({R}_{\psi}\) is affected
by turns about the z-axis and \({R}_{\psi}\) should be increased accordingly to account for
lag and other effects.


	Combining heading from two sources.      Need to think of how to combine these two measurements


	Don’t use mag heading when GPS valid?




5) Latency in GPS message: Any latency in obtaining, parsing, and providing GPS messages should
be accounted for by either 1) adjusting R or 2) accounting for the latency.  For instance, if
the GPS messages is consistently late by DT seconds, then the heading can be adjusted by a
formula such as:





\[ \begin{align}\begin{aligned}\psi_{GPS} = \psi_{GPS} - \dot{\psi} \cdot \Delta{T}\\6) Much of the math on which the EKF is based consists of sparse matrices.  Using algorithms
that take advantage of sparse matrices make the algorithms run much faster and permit higher
execution rates.  For the most part, only the *P*-matrix needs to have all its elements
considered.\\7) The INS algorithm makes use of a sequential approach to solving for the states.  From an
execution point-of-view this makes the runtime of the algorithm significantly less as only 3x3
matrix inverses are required to solve for the state updates\end{aligned}\end{align} \]

Test Results

Appendix:
Cross-Product Matrix:
The cross-product between two 3x1 vectors is calculated as:
vec{a} timesb ⃑=|■(i ̂&j ̂&k ̂@a_x&a_y&a_z@b_x&b_y&b_{z} )|=■(i ̂ cdot (a_y cdot b_{z}-a_z cdot b_y )@-j ̂ cdot (a_x cdot b_{z}-a_z cdot b_x )@+k ̂ cdot (a_x cdot b_y-a_y cdot b_x ) )
=[■(0&-a_z&a_y@a_z&0&-a_x@-a_y&a_x&0)] cdot {■(b_x@b_y@b_{z} )}
The resulting cross-product matrix is:
[vec{a} times]=[■(0&-a_z&a_y@a_z&0&-a_x@-a_y&a_x&0)]
Resulting in the final expression:
vec{a} timesb ⃑=[vec{a} times] cdot vec{b}
This terminology can be used to simplify expressions for larger matrices.  For example, Ω can be rewritten as
Ω=[■(0&-ω ⃑^T@ω ⃑&[ω ⃑ times]^T )]=[■(0&-ω ⃑^T@ω ⃑&-[ω ⃑ times] )]
where [ω ⃑ times] is the cross-product matrix based on the angular velocity vector, ω ⃑^B:
[ω ⃑ times]≝[■(0&-ω_z&ω_y@ω_z&0&-ω_x@-ω_y&ω_x&0)]

Process Jacobians:
Only the less obvious derivatives are included here.
Derivation of ∂v∂q:
∂v∂q≝2 cdot ∆t cdot (■([■(■(■(q_{0}@q_{3}@-q_{2} )&■(q_{1}@q_{2}@q_{3} ))&■(■(-q_{2}@q_{1}@-q_{0} )&■(-q_{3}@q_{0}@q_{1} )))] cdot a ̂_(motion x)^B+⋯@[■(■(■(-q_{3}@q_{0}@q_{1} )&■(q_{2}@-q_{1}@q_{0} ))&■(■(q_{1}@q_{2}@q_{3} )&■(-q_{0}@-q_{3}@q_{2} )))] cdot a ̂_(motion y)^B+⋯@[-■(■(■(q_{2}@q_{1}@q_{0} )&■(q_{3}@-q_{0}@-q_{1} ))&■(■(q_{0}@q_{3}@-q_{2} )&■(q_{1}@q_{2}@q_{3} )))] cdot a ̂_(motion z)^B ))
Form the matrix Q ̅
Q ̅=[■(■(■(q_{1}@q_{2}@q_{3} )&■(q_{0}@q_{3}@-q_{2} ))&■(■(-q_{3}@q_{0}@q_{1} )&-■(q_{2}@q_{1}@q_{0} )))]=[■(vec{q}_{v}&q_{0}⋅I_3+[vec{q}_{v} times] )]
∂v∂q≝2 cdot ∆t cdot (■(Q ̅ cdot [■(■(0&1@1&0)&■(0&0@0&0)@■(0&0@0&0)&■(0&1@-1&0))] cdot a ̂_(motion x)^B+⋯@Q ̅ cdot [■(■(0&0@0&0)&■(1&0@0&-1)@■(1&0@0&1)&■(0&0@0&0))] cdot a ̂_(motion y)^B+⋯@Q ̅ cdot [■(■(0&0@0&0)&■(0&1@1&0)@■(0&-1@1&0)&■(0&0@0&0))] cdot a ̂_(motion z)^B ))
∂v∂q≝2 cdot ∆t cdot Q ̅ cdot (■([■(■(0&1@1&0)&■(0&0@0&0)@■(0&0@0&0)&■(0&1@-1&0))] cdot a ̂_(motion x)^B+⋯@[■(■(0&0@0&0)&■(1&0@0&-1)@■(1&0@0&1)&■(0&0@0&0))] cdot a ̂_(motion y)^B+⋯@[■(■(0&0@0&0)&■(0&1@1&0)@■(0&-1@1&0)&■(0&0@0&0))] cdot a ̂_(motion z)^B ))
The terms inside the parenthesis can be written as:
[■(■(0&1@1&0)&■(0&0@0&0)@■(0&0@0&0)&■(0&1@-1&0))] cdot a ̂_(motion x)^B+[■(■(0&0@0&0)&■(1&0@0&-1)@■(1&0@0&1)&■(0&0@0&0))] cdot a ̂_(motion y)^B+[■(■(0&0@0&0)&■(0&1@1&0)@■(0&-1@1&0)&■(0&0@0&0))] cdot a ̂_(motion z)^B
Expanding the equation and writing the resultant matrix using vector and cross-product terms results in the final form for ∂v∂q:
∂v∂q≝2 cdot ∆t cdot Q ̅⋅[■(0&(a ̂_motion^B )^T@a ̂_motion^B&-[a ̂_motion^B times] )]

Compute ∂q∂ω_bias
Expand
-∆t/2 cdot Ω_(noise,k-1) cdot q ⃑_(k-1)
And differentiate wrt the bias terms leads to:
Q^*≝2 cdot ∆t cdot [■(■(q_{1}@-q_{0} )&■(q_{2}@q_{3} )&■(q_{3}@-q_{2} )@■(-q_{3}@q_{2} )&■(-q_{0}@-q_{1} )&■(q_{1}@-q_{0} ))]=-Ξ_(k-1)

The second term, Q^*, is:
Q^*≝[■(■(q_{1}@-q_{0} )&■(q_{2}@q_{3} )&■(q_{3}@-q_{2} )@■(-q_{3}@q_{2} )&■(-q_{0}@-q_{1} )&■(q_{1}@-q_{0} ))]=[■((vec{q}_{v} )^T@-(q_{0}⋅I_3+[vec{q}_{v} times]) )]=-Ξ_(k-1)

Software Implementation

Initialization:

a_sum=∑_(k=1)^N▒a ⃑_k^B
m_sum=∑_(k=1)^N▒m ⃑_k^B

After N data-points are collected, average data and from the ICs:
a ̅^B=a_sum/N
m ̅^B=m_sum/N

Compute the gravity and magnetic-field unit-vectors:
g ̂^B=-a ̅^B/|a ̅^B |
m ̂^B=-m ̅^B/|m ̅^B |

Find the components of the magnetic-field that are parallel and perpendicular to the gravity vector:
m ⃑_(∥g)^B=(m ̂^B⋅g ̂^B ) cdot g ̂^B
m ⃑_(⊥g)^B=m ̂^B-m ⃑_(∥g)^B

Form the axes of the NED-frame from the magnetic and gravity field vectors.  The D-axis is parallel to the gravity vector while the N-axis is parallel to the magnetic field vector that is perpendicular to the gravity vector:
z ̂_N^B=g ̂^B
x ̂_N^B=(m ⃑_(⊥g)^B)/|m ⃑_(⊥g)^B |
〖y ̂_N^B=z ̂_N^B timesx ̂〗_N^B

The transformation matrix, (_^N)R_^B , is formed from these unit-vectors:
(_^N)R_^B =[■((x ̂_N^B )^T@(y ̂_N^B )^T@(z ̂_N^B )^T )]=[■(x ̂_B^N&y ̂_B^N&z ̂_B^N )]

The attitude quaternion, (_^N)q_^B , can be calculated from (_^N)R_^B :
(_^N)q_^B =f((_^N)R_^B )

The initial state-vector is formed from these values:
vec{x}_0={■(■(r@v@(_^N)q_^B  )@ω ⃑_bias@a ⃑_bias )}

Appendix Q:

Quaternion process covariance:
〖w_q cdot {vec{w}_{q}}^T=(Δt/2)〗^{2} cdot (Ξ cdot Σ_ω cdot Ξ^T )

The rate-sensor noise is treated as a stationary process, so the time subscript, k, can be dropped from the noise terms.  However, the attitude does change with time and k should remain on the quaternion terms (removed here for ease of reading).  Additionally, the sensor noise is assumed to be the same for all sensor channels.
Ξ≡[■(-〖vec{q}_{v}〗^T@q_{0} cdot I_3+[vec{q}_{v} times] )]
〖w_q cdot {vec{w}_{q}}^T=(Δt/2)〗^{2} cdot [■(■(-q_{1}&-q_{2}@q_{0}&-q_{3} )&■(-q_{3}@q_{2} )@■(q_{3}&q_{0}@-q_{2}&q_{1} )&■(-q_{1}@q_{0} ))] cdot [■(〖σ_ω〗^{2}&0&0@0&〖σ_ω〗^{2}&0@0&0&〖σ_ω〗^{2} )] cdot [■(■(-q_{1}&q_{0} )&■(q_{3}&-q_{2} )@■(-q_{2}&-q_{3} )&■(q_{0}&q_{1} )@■(-q_{3}&q_{2} )&■(-q_{1}&q_{0} ))]
〖w_q cdot {vec{w}_{q}}^T=(Δt/2)〗^{2} cdot 〖σ_ω〗^{2} cdot [■(■(-q_{1}&-q_{2}@q_{0}&-q_{3} )&■(-q_{3}@q_{2} )@■(q_{3}&q_{0}@-q_{2}&q_{1} )&■(-q_{1}@q_{0} ))] cdot [■(■(-q_{1}&q_{0} )&■(q_{3}&-q_{2} )@■(-q_{2}&-q_{3} )&■(q_{0}&q_{1} )@■(-q_{3}&q_{2} )&■(-q_{1}&q_{0} ))]
Performing the multiplication (and crossing out terms that cancel) results in:
Sigma_{q} = ((σ_ω cdot ∆t)/2)^{2} cdot [■(■(1-{q_{0}}^{2}&-q_{0} cdot q_{1}@-q_{0} cdot q_{1}&1-{q_{1}}^{2} )&■(-q_{0} cdot q_{2}&-q_{0} cdot q_{3}@-q_{1} cdot q_{2}&-q_{1} cdot q_{3} )@■(-q_{0} cdot q_{2}&-q_{1} cdot q_{2}@-q_{0} cdot q_{3}&-q_{1} cdot q_{3} )&■(1-{q_{2}}^{2}&-q_{2} cdot q_{3}@-q_{2} cdot q_{3}&1-{q_{3}}^{2} ))]


	Rate-bias Process-Covariance:

	
	w ⃑_(q,k-1)     =-∆t/2 cdot {■(■(-ω_(noise x,k-1)^B cdot q_(1,k-1)-ω_(noise y,k-1)^B cdot q_(2,k-1)-ω_(noise z,k-1)^B cdot q_(3,k-1)@ω_(noise x,k-1)^B cdot q_(0,k-1)+ω_(noise z,k-1)^B cdot q_(2,k-1)-ω_(noise y,k-1)^B cdot q_(3,k-1) )@■(ω_(noise y,k-1)^B cdot q_(0,k-1)-ω_(noise z,k-1)^B cdot q_(1,k-1)+ω_(noise x,k-1)^B cdot q_(3,k-1)@ω_(noise z,k-1)^B cdot q_(0,k-1)+ω_(noise y,k-1)^B cdot q_(1,k-1)-ω_(noise x,k-1)^B cdot q_(2,k-1) ))}

	=-∆t/2 cdot [■(■(-q_(1,k-1)&-q_(2,k-1)@q_(0,k-1)&-q_(3,k-1) )&■(-q_(3,k-1)@q_(2,k-1) )@■(q_(3,k-1)&q_(0,k-1)@-q_(2,k-1)&q_(1,k-1) )&■(-q_(1,k-1)@q_(0,k-1) ))] cdot {■(ω_(noise x,k-1)^B@ω_(noise y,k-1)^B@ω_(noise z,k-1)^B )}
=-∆t/2 cdot [■(-〖vec{q}_{v}〗^T@q_{0} cdot I_3+[vec{q}_{v} times] )] cdot ω ⃑_(noise,k-1)^B

=-∆t/2 cdot Ξ cdot ω ⃑_(noise,k-1)^B









Velocity Process-Covariance:
Q_v=vec{w}_{v,k-1}^{N} cdot {vec{w}_{v,k-1}^{N}}^T
vec{w}_{v,k-1}^{N}=-{{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot ∆t
Q_v=(-{{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot ∆t) cdot (-{{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot ∆t)^T
Q_v=(-∆t)^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot 〖a ⃑_(noise,k-1)^B〗^T cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Q_v=(-∆t)^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot [■({sigma_{a}}^{2}&0&0@0&{sigma_{a}}^{2}&0@0&0&{sigma_{a}}^{2} )] cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Q_v=(-∆t cdot sigma_{a} )^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot [■(1&0&0@0&1&0@0&0&1)] cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Q_v=(-∆t cdot sigma_{a} )^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Since {{^{N}{R_{k-1}}^{B}}}  is orthonormal
{{^{N}{R_{k-1}}^{B}}} cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T={{^{N}{R_{k-1}}^{B}}} cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^(-1)=I_3
Q_v=(-∆t cdot sigma_{a} )^{2} cdot I_3

Appendix Trigonometric function Derivatives:
For θ=atan2(y,x), the derivative ∂θ/∂q, where x and y are functions of q, is:



	∂θ/∂q   =(∂atan2(y,x))/∂x cdot ∂x/∂q+(∂atan2(y,x))/∂y cdot ∂y/∂q

	=(-y)/(x^{2}+y^{2} ) cdot ∂x/∂q+(-y)/(x^{2}+y^{2} ) cdot ∂y/∂q









	For θ=-asin(u), the derivative ∂θ/∂q, where x and y are functions of q, is:

	
	∂θ/∂q   =-(∂ asin⁡(u))/∂u cdot ∂u/∂q

	=(-1)/sqrt{1 - u^{2}} cdot ∂u/∂q









Least-Square Hard/Soft-Iron Parameter Estimation:
The hard and soft-iron parameters corresponding to a given system are estimated (for a two-dimensional problem) using the Magnetic-Alignment process described earlier.  After the maneuver is performed, the x and y-magnetic field measurement data is processed to determine parameters that best describe the resulting ellipse.
Two methods can be used to find these parameters.  An elegant and interesting approach to the least-squares solution was developed by Andrew W. Fitzgibbon, Maurizio Pilu, and Robert B. Fisher.  Entitled Direct least-squares fitting of ellipses, and published in IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476–480, May 1999.  Matlab code and an extension to improve numerical accuracy are found at http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/ELLIPSE/.
However this method requires solving for eigenvalues, which is numerically intensive.  Instead a least-squares approach was selected based on general quadratic form of the ellipse equation.
A cdot x^{2}+B cdot x cdot y+C cdot y^{2}+D cdot x+E cdot y+F=0
The least-squares solution was found by first forming an equation representing the error for a given data-point
ε_i=A cdot 〖x_i〗^{2}+B cdot x_i cdot y_i+C cdot 〖y_i〗^{2}+D cdot x_i+E cdot y_i+F
then computing the summation of the errors squared
ε_T=∑_(i=1)^n▒〖ε_i〗^{2}
and, finally, minimizing the summation with respect to each coefficient
〖dε〗_T/dA=0
etc.
This resulting system of equations can be written in matrix form as A_LS cdot x=b_LS, where the constituent matrices are:
A_LS=[■(■(∑▒〖〖x_i〗^{2} cdot 〖y_i〗^{2} 〗@∑▒〖x_i cdot 〖y_i〗^3 〗@■(∑▒〖〖x_i〗^{2} cdot y_i 〗@∑▒〖x_i cdot 〖y_i〗^{2} 〗@∑▒〖x_i cdot y_i 〗))&■(∑▒〖x_i cdot 〖y_i〗^3 〗@∑▒〖y_i〗^4 @■(∑▒〖x_i cdot 〖y_i〗^{2} 〗@∑▒〖y_i〗^3 @∑▒〖y_i〗^{2} ))&■(■(∑▒〖〖x_i〗^{2} cdot y_i 〗@∑▒〖x_i cdot 〖y_i〗^{2} 〗@■(∑▒〖x_i〗^{2} @∑▒〖x_i cdot y_i 〗@∑▒x_i ))&■(∑▒〖x_i cdot 〖y_i〗^{2} 〗@∑▒〖y_i〗^3 @■(∑▒〖x_i cdot y_i 〗@∑▒〖y_i〗^{2} @∑▒y_i ))&■(∑▒〖x_i cdot y_i 〗@∑▒〖y_i〗^{2} @■(∑▒x_i @∑▒y_i @n))))]
b_LS=[■(∑▒〖〖x_i〗^3 cdot y_i 〗@∑▒〖〖x_i〗^{2} cdot 〖y_i〗^{2} 〗@■(∑▒〖x_i〗^3 @∑▒〖〖x_i〗^{2} cdot y_i 〗@∑▒〖x_i〗^{2} ))]
and the coefficient matrix
x=[■(■(A@B)@■(C@D)@■(E@F))]
The coefficients can be found via Gaussian elimination.
Based on test data, both solutions provide consistent results.  This is possible as data from a complete 360 degree rotation is used for the data set.  If the system had transited only a small arc then the method described by Fitzgibbon et al. is preferred.

Appendix
Example sensor values for a single unit captured over a half-hour in a noisy environment (at my desk)
Sensor


Min     Max     Mean    Std Dev Allan Var





	GPS Position    X

	Y
Z



	GPS Velocity    X

	Y
Z



	Angular Rate Sensor [deg/sec]   X       -0.288  0.365   2. 4948e-2      8.42685e-2

	Y       -0.442  0.481   -4.8527e-3      9.04376e-2
Z       -0.558  0.250   -0.13971        9.80244e-2



	Accelerometer [g]       X       5.8e-3  9.5e-3  7.7358e-3       4.41395e-4

	Y       -4.0e-3 1.5e-3  -1.457e-3       5.80786e-4
Z       -1.0052 -0.9964 -1.000723       6.52203e-4



	Magnetometer    X       0.21271 0.21912 0.21632 7.4808e-4

	Y       -0.1651 -0.15442        -0.16002        1.1478e-3
Z       0.28656 0.29297 0.28945 7.6077e-4





Others:





          

      

      

    

  

    
      
          
            
  
Time System

OpenRTK internally uses GPST (GPS Time) for GNSS data handling and positioning algorithms.
The time of input data expressed in other time systems like UTC  (Universal Time Coordinated)
is converted to GPST before internal processing or the GPST of the internal data is converted
to the appropriate other time system before output. One of the reasons why using GPST is to avoid
leap seconds handling. UTC, which is the most generally used time system, is not a continuous
time system with a second jump by the leap second insertion or deletion.

The GPST is often expressed as a GPS week number and TOW (time of week) in seconds
since the start epoch of 00:00:00 UTC on January 6, 1980. RTKLIB, however, does not
use such a convention. In GNSS data processing, we often need to convert a time to
a range or a range to a time. The TOW even expressed as a double precision has only the
resolution of \(1.3 \times 10^{-10}\) s in time, which is equivalent to the resolution of 0.04 m in range.


GPS Time and Universal Time Coordinated

The rough conversion of GPST to UTC (Universal Time Coordinated) or UTC to GPST can be
expressed simply as:


\[ \begin{align}\begin{aligned}t_{UTC} = t_{GPS} - \Delta t_{LS}\\t_{GPS} = t_{UTC} + \Delta t_{LS}\end{aligned}\end{align} \]

where \(t_{UTC}\) and \(t_{GPS}\) are the time expressed in UTC (s) and the time in GPST (s).
\(\Delta t_{LS}\) is the delta time (s) between UTC and GPST due to the cumulative leap seconds since January 6, 1980.

The accuracy of the approximation in formula above is within several 10 ns. By using the UTC parameters in GPS navigation messages,
we can convert GPST to UTC or UTC to GPST more accurately as:


\[t_{UTC} = t_{GPS} - {\Delta t_{LS} + A_0 + A_1(t_E - t_{ot} + 604800(WN - WN_t))}\]

where \(A_0, A_1, t_E, t_{ot}, WN are WN_t\) are the UTC parameters provided in GPS navigation messages.
More strictly, UTC in formula above is UTC(USNO), which is the US local implementation of UTC.
The difference between UTC and UTC(USNO) can be obtained in Circular T provided by BIPM [72].
The difference is usually several ns level.



GLONASS Time

GLONASST (GLONASS Time) is based on UTC(SU) and includes leap second insertion or deletion.
GLONASST is also aligned to the local time. So, roughly, the time \(t_{GLONASS}\) (s) in GLONASST
can be converted to the time \(t_{UTC}\) (s) in UTC.


\[t_{UTC} = t_{GLONASS} - 10800\]

More accurately, the UTC parameters for GLONASST in GLONASS navigation message should be
used similar to the GPST and UTC conversion. Ignoring the leap seconds and the 3 hour offset,
the difference between GPST and GLONASST is usually 100 or several 100 ns level.



Galileo Time

GST (Galileo System Time) is composed of week number from the origin of the Galileo time
and the TOW (time of week) in seconds. The GST start epoch is 00:00:00 UTC on August 22,
1999. At the start epoch, GST shall be ahead of UTC by 13 seconds. The GST is continuous
time without leap second insertion or deletion. So, the GST is aligned to GPST except for
the 1024 weeks difference of the time system origin and a small time offset (GGTO). Note that
the Galileo week number is provided as equal to the GPS week number in the RINEX convention.



BDS Time

BDT (BeiDou Navigation Satellite System Time) is a continuous time system without
leap second insertion or deletion. The start epoch of BDT is 00:00:00 UTC on
January 1, 2006. The offset of BDT with respect to UTC is controlled within 100 ns
(modulo 1 second). So, the time \(t_{GPS}\) (s) in GPST can roughly be converted to the
time \(t_{BDT}\) (s) in BDT within the accuracy of 200 ns as:


\[t_{BDT} = t_{GPST} - 14\]

More accurately, the UTC parameters for BDT in BeiDou navigation messages
should be used similar to the GPST and UTC conversion.





          

      

      

    

  

    
      
          
            
  
Integer Ambiguity Resolution

Once the estimated states obtained in the EKF measurement update, the float
carrier‐phase ambiguities can be resolved into integer values in order to improve
accuracy and convergence time. At first, the estimated states and their covariance
matrix are transformed to DD (double-difference) forms by:


\[\begin{split}&\hat{\pmb{x}}'_k=\pmb{G}\hat{\pmb{x}}_k(+)={(\hat{\pmb{r}}_r^T,\hat{\pmb{v}}_r^T,\hat{\pmb{N}}^T)}^T\\
&\pmb{P}'_k=\pmb{GP}_k(+)\pmb{G}^T=\begin{pmatrix}
   \pmb{Q}_R&\pmb{Q}_NR\\
   \pmb{Q}_RN&\pmb{Q}_N\\
   \end{pmatrix}\end{split}\]

where:


\(\pmb{G}=\begin{pmatrix}\pmb{I}_{6\times6}&\ &\ &\ \\\ &\pmb{D}&\ &\ \\\ &\ &\pmb{D}&\ \\\ &\ &\ &\pmb{D}\end{pmatrix}\):
SD (single-difference) to DD transformation matrix




In this transformation, the SD carrier‐phase biases are transferred to the DD carrier‐phase form in
order to eliminate receiver initial phase terms to obtain integer ambiguities \(\hat{\pmb{N}}\)
and their covariance \(\pmb{Q}_N\). In these formulas, the most appropriate integer vector
\(\breve{\pmb{N}}\) for the integer ambiguities is obtained by solving an ILS (integer least square)
problem expressed as:


\[\breve{\pmb{N}}=\mathop {argmin}_{\pmb{N} \in \pmb{Z}}({(\pmb{N}-\hat{\pmb{N}})}^T\pmb{Q}_N^{-1}(\pmb{N}-\hat{\pmb{N}}))\]

To solve the ILS problem, a well‐known efficient search strategy LAMBDA and its extension
MLAMBDA are employed in OpenRTK. LAMBDA and MLAMBDA offer the combination of a linear
transformation to shrink the integer vector search space and a skillful tree‐search procedure in the
transformed space. The integer vector solution by these procedures is validated by the following
simple ʺRatio‐Testʺ. In the ʺRatio‐Testʺ, the ratio‐factor \(R\), defined as the ratio of the weighted sum of
the squared residuals by the second best solution \(\breve{\pmb{N}}_2\) to one by the best
\(\breve{\pmb{N}}\), is used to check the reliability of the solution. The validation threshold
\(R_{thres}\) can be set by the processing option ʺMin Ratio to Fix Ambiguityʺ. Current OpenRTK just
only supports a fixed threshold value.


\[R=\frac{{(\breve{\pmb{N}}_2-\hat{\pmb{N}})}^T{\pmb{Q}_N}^{-1}(\breve{\pmb{N}}_2-\hat{\pmb{N}})}{{(\breve{\pmb{N}}-\hat{\pmb{N}})}^T{\pmb{Q}_N}^{-1}(\breve{\pmb{N}}-\hat{\pmb{N}})}>R_{thres}\]

After the validation, the ʺFIXEDʺ solution of the rover antenna position and velocity \(\breve{\pmb{r}}_r\)
and \(\breve{\pmb{v}}_r\) are obtained by solving the following equation. If the validation failed, OpenRTK
outputs the ʺFLOATʺ solution  \(\hat{\pmb{r}}_r\) and \(\hat{\pmb{v}}_r\) instead.


\[\begin{split}\begin{pmatrix}\ \breve{\pmb{r}_r}\\\ \breve{\pmb{v}_r}\end{pmatrix}=&
\begin{pmatrix}\ \hat{\pmb{r}_r}\\\ \hat{\pmb{v}_r}\end{pmatrix}-&
\pmb{Q}_{RN}{\pmb{Q}_N}^{-1}(\hat{\pmb{N}}-\breve{\pmb{N}})\end{split}\]

In case the processing option is set as the ʺFix and Holdʺ mode (Integer Ambiguity Resolution = Fix
and Hold) and the fixed solution properly validated by the previous test, the DD carrier‐phase bias
parameters are tightly constraint to the fixed integer values. For these purpose, RTKLIB inputs the
following ʺpseudoʺ measurements to EKF and updates EKF.


\[\begin{split}&\pmb{y}=\breve{\pmb{N}}\\
&\pmb{h}(\pmb{x})=\pmb{Gx}\\
&\pmb{H}(\pmb{x})=\pmb{G}\\
&\pmb{R}=diag(\sigma_c^2,\sigma_c^2,\sigma_c^2,...)\end{split}\]

where:


\(\pmb{G}=\begin{pmatrix} \pmb{0}&\pmb{D} &\ &\ \\  \pmb{0}&\ &\pmb{D}&\ \\  \pmb{0}&\ &\ &\pmb{D} \end{pmatrix}\):
SD to DD transformation matrix

\(\sigma_c\): constraint to fixed integer ambiguities (= 0.001 cycle).







          

      

      

    

  

    
      
          
            
  
Cycle Slip Detection

One of the various methods for detecting and identifying cycle slips is to obtain the triple-difference (TD)
observations of carrier phases first. By triple differencing the observations (that is, at two adjacent data collection
epochs differencing double-difference (DD) observations which is differencing between receivers followed by
differencing between satellites) biases such as the clock offsets of the receivers and GPS satellites, and
ambiguities can be removed. The TD observables (in distance per second units) are


\[\begin{split}&\delta \nabla \Delta \Phi_1 = \delta \nabla \Delta \rho+\lambda_1\cdot \nabla \Delta C_1+\delta \nabla \Delta \tau
+\delta \nabla \Delta s -\delta \nabla \Delta I+\delta \nabla \Delta b_1+\delta \nabla \Delta \epsilon_1\\
&\delta \nabla \Delta \Phi_2 = \delta \nabla \Delta \rho+\lambda_2\cdot \nabla \Delta C_2+\delta \nabla \Delta \tau
+\delta \nabla \Delta s-\gamma \cdot \delta \nabla \Delta I+\delta \nabla \Delta b_2+\delta \nabla \Delta \epsilon_2\end{split}\]

where \(\Phi\) is the measured carrier phase; \(\rho\) is the geometric range from receiver to GPS satellite;
\(\lambda\) is the carrier wavelength ; \(C\) is a potential cycle slip (in cycle units); \(\tau\) is the
delay due to the troposphere; \(s\) is the satellite orbit bias; \(I\) is the delay of L1 carrier phase due to
the ionosphere; \(\gamma={(\lambda_2/\lambda_1)}^2\approx 1.65\); \(b\) is multipath; \(\epsilon\) is
receiver system noise; subscripts “1” and “2” represent L1 and L2 carrier phases, respectively; and \(\nabla \Delta\)
and \(\delta \nabla \Delta\) are the DD and TD operators, respectively.

In most GPS applications, regardless of surveying modes (static and kinematic) and baseline lengths (short, medium
and long), the effects of the triple-differenced biases and noise (i.e., atmospheric delay, satellite orbit bias,
multipath, and receiver system noise) are more or less below a few centimetres as long as observation sampling
interval is relatively short (e.g., sampling interval less than 1 minute). There could be exceptional situations such
as an ionospheric disturbance, extremely long baselines, and huge (rapid) variation of the heights of surveying
points in which the combined effects of the biases and noise can exceed the wavelengths of L1 and L2 carrier
phases. However, to simplify our discussion, we will assume, for the time being, that such situations can be
easily controlled through adjusting the sampling rate so that the combined effects of the biases and noise can be
reduced below a few centimetres. In the section of “Cycle-slip Candidates”, we will see that we can remove
this assumption.

Cycle-slip Observables

As revealed in the formula above, the geometric range should be removed to estimate the size of cycle slips. If we can
replace the TD geometric ranges with their estimates, then the TD carrier-phase prediction residuals become


\[\begin{split}&\delta \Phi_{TD1} = \delta \nabla \Delta \Phi_1-\delta \nabla \Delta \hat \rho=\lambda_1\cdot \nabla \Delta C_1+\epsilon'_1\\
&\delta \Phi_{TD2} = \delta \nabla \Delta \Phi_2-\delta \nabla \Delta \hat \rho=\lambda_2\cdot \nabla \Delta C_2+\epsilon'_2\end{split}\]

where


\[\begin{split}&\epsilon'_1 = \delta \rho_{TD}+\delta \nabla \Delta \tau+\delta \nabla \Delta s-\delta \nabla \Delta I+\delta \nabla \Delta b_1+\delta \nabla \Delta \epsilon_1\\
&\epsilon'_2 = \delta \rho_{TD}+\delta \nabla \Delta \tau+\delta \nabla \Delta s-\gamma \cdot \delta \nabla \Delta I+\delta \nabla \Delta b_2+\delta \nabla \Delta \epsilon_2\end{split}\]

and \(\delta \rho_{TD}(=\delta \nabla \Delta \rho-\delta \nabla \Delta \hat \rho)\) represents the prediction
residuals of TD geometric ranges. As seen the above two formulas, therefore, the TD carrier-phase prediction residuals
will be a good measure for detecting and correcting cycle
slips if the effects of the residuals in the formula above are small.

TD Geometric Range Estimation

To obtain the estimates of the TD geometric ranges, we need an other observable which is immune from cycle
slips. The Doppler frequency and the TD pseudoranges can be used for this purpose. The former is preferable to
reduce the effects of the residuals in the formula above. Using the Doppler frequency at two adjacent data collection epochs,
we have


\[\delta \nabla \Delta \hat \rho_k = -(\nabla \Delta D_k+\nabla \Delta D_{k-1})/2\]

where \(D\) is the Doppler frequency (in distance per second units); subscripts “k” and “k-1” represent the time tags of
two adjacent data collection epochs and the sign is reversed due to the definition of Doppler shift. For some
receivers for which the Doppler frequency is not available to users, the TD pseudoranges (somewhat nosier than the
Doppler frequency) can be used instead. Then the estimates of the TD geometric ranges are given as:


\[\delta \nabla \Delta \hat \rho_k=(\delta \nabla \Delta P_k-\delta \nabla \Delta P_{k-1})/\delta t\]

where \(P\) is the measured pseudorange and \(\delta t(=t_k-t_{k-1})\)
is the time interval between two adjacent data collection epochs.

Cycle-slip Candidates

Consider the first two moments of the TD carrier-phase prediction residuals


\[\begin{split}&E[\delta \Phi_{TDi}] = \lambda_i\cdot \nabla \Delta C_i, i=1,2\\
&Cov[\delta \Phi_{TDi}]=Q_{TDi}\end{split}\]

where \(E[\cdot]\) and \(Cov[\cdot]\) are the mathematical expectation and variance-covariance operators. Since there is no
redundancy to carry out statistical testing for the formula above, we will use it to obtain the cycle-slip candidates. In this case,
we need a priori information for the second moment. This can be obtained either through system tuning or adaptive
estimation. This means that we do not have to assume specific models for the biases and noise.

Filtering of Cycle-slip Candidates

When dual-frequency carrier phases are available, we can reduce, to a large extent, the number of cycle-slip
candidates using the TD geometry-free phase (a scaled version of which is called the ionospheric delay rate). The
TD geometry-free phase (in distance per second units) is


\[\begin{split}\delta \Phi_{GF}&=\delta \nabla \Delta \Phi_1-\delta \nabla \Delta \Phi_2\\
&=(\lambda_1 \cdot \nabla \Delta C_1-\lambda_2 \cdot \nabla \Delta C_2)+\epsilon"\end{split}\]

where


\[\epsilon"=(\gamma -1)\delta \nabla \Delta I+(\delta \nabla \Delta b_1-\delta \nabla \Delta b_2)+(\delta \nabla \Delta \epsilon_1-\delta \nabla \Delta \epsilon_2)\]

We can also consider the first two moments of the TD geometry-free phase


\[\begin{split}&E[\delta \Phi_{GF}]=\lambda_1 \cdot \nabla \Delta C_1-\lambda_2 \cdot \nabla \Delta C_2\\
&Cov[\delta \Phi_{GF}]=Q_{\delta GF}\end{split}\]

An exceptional case is the combination-insensitive cycle-slip pairings of which the expectation in the above formula is close to zero.

Cycle-slip Validation

Fixing cycle slips in the TD observations is conceptually the same problem as resolving ambiguities in the DD
observations. Consider the linearized model of the TD observables:


\[\begin{split}&\pmb y = \pmb{Ac}+\pmb{Bx}+\pmb{e}, \pmb{c} \in Z^n, \pmb{x} \in R^u\\
&Cov[\pmb{y}]=\pmb{Q}，\end{split}\]

where y is the \(n \times 1\) vector of the difference between the TD observations and their computed values; \(n\) is the
number of measurements; c is the \(n \times 1\) vector of the cycle-slip candidates; x is the \(u \times 1\) vector of all other
unknown parameters including position and other parameters of interest; \(u\) is the number of all other
unknowns except cycle slips; A and B are the design matrices of the cycle-slip candidates and the other
unknown parameters; e is the \(n \times 1\) vector of the random errors.

The first step for cycle-slip validation is to search for the best and second best cycle-slip candidates which
minimize the quadratic form of the residuals. The residuals of least-squares estimation for cycle-slip candidates are given as:


\[\pmb{\hat v} = \pmb{y'}-\pmb{B\hat x},\]

where


\[\begin{split}&\pmb{y'} = \pmb{y} - \pmb{Ac}\\
&\pmb{\hat x} = {(\pmb{B^TQ^{-1}B})}^{-1}\pmb{B^TQ^{-1}y'}\end{split}\]

Then, discrimination power between two candidates is measured by comparing their likelihood. We follow a conventional discrimination
test procedure similar to that described by Wang et al. [1998]. A test statistic for cycleslip validation is given by


\[d=\Omega_{e1}-\Omega_{e2}\]

where \(\Omega_{e1}\) and \(\Omega_{e1}\) are the quadratic form of the residuals of the best and second best candidates.
A statistical test is performed using the following null and alternative hypotheses:


\[H_0:E[d] = 0, H_1:E[d]\ne0\]

A test statistic for testing the above hypotheses is given by


\[W = \frac{d}{\sqrt{Cov(d)}}\]

where


\[Cov[d] = 4{(\pmb{c_1-c_2})}^T\pmb{Q_c^{-1}}(\pmb{c_1-c_2})
\pmb{Q_c^{-1}} = \pmb{Q}^{-1}-\pmb{Q^{-1}B{(B^TQ^{-1}B)}^{-1}}B^TQ^{-1}\]

If y is assumed as having a normal distribution, \(d\) is normally distributed. Therefore, \(W\) has mean 0 and
standard deviation 1 under the null hypothesis. Adopting a confidence level \(\alpha\), it will be declared that the
likelihood of the best cycle-slip candidate is significantly larger than that of the second best one if


\[W > N(0,1:1-\alpha)\]

Finally, a reliability test is carried out after fixing cycle slips in order to diagnose whether errors still remain in the observations.
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RAWDATA App


The RAWDATA App is a set of open source firmware of OpenRTK330 module/EVB, and is prepared for users who has their own GNSS RTK and INS positioing engine and wants to embedd their positioning engine in the App to build a GNSS/INS integrated positioning system.





Build


Open VS Code and go to “Aceinna” extension home page, if for a new project, click “Custom IMU Examples” and find “OpenRTK330LI/RAWDATA” from the example dropdown list, click “Import” to create a new project with source code on your PC; if the import has been done before, go to the bottom “Recent Projects” and click “Open” on the right side



[image: ../_images/rawdata_App_import.jpg]




The App then starts pull OpenRTK330 open source firmware lib [https://github.com/Aceinna/openRTK330-lib.git] and copys the entire library into the App’s current project folder under “.pio”



[image: ../_images/rawdata_build.png]




As shown by the above figure, if the downloading process finishes, you will have the whole “RAWDATA App” workspace to build, edit, and download firmware to OpenRTK330 module.

The red marked #1, #2, and #3 on the bottom toolbar are the shortcuts to return to “Aceinna” extension “Home” page, “Build” firmware, and “Upload” firmware commands, respectively. Click the “Build” to build the entire project, and if without errors, click the “Upload” icon to flash the “RAWDATA”App to OpenRTK330 module.






Algorithm Code Interfaces


This section describes the detail code interfaces for user to briefly understand the firmware frame and to embedd their own algorithms quickly. It’s recommended to refer to the OpenRTK330 module hardware [https://openrtk.readthedocs.io/en/latest/OpenRTK330.html] and EVB hardware and layout [https://openrtk.readthedocs.io/en/latest/EVK-OpenRTK330LI/schematic.html] for understanding of the firmware here.

Checking the “main.c” source file, the whole system is initialized here, and the four UART ports of the MCU are initialzed with a baud rate of 460800 per seconds and are used as the system’s primary I/O. Most importantly, there are four RTOS tasks created as the follows:


	IMU Data Acquisition Task - IMU_DATA_ACQ_TASK, highest priority


	Function: acquires raw IMU data in 100 Hz


	Source file: imu_data_acq_task.c


	Algorithm interface: user can put INS algorithm entry in the place as shown by the figure below



[image: ../_images/ins_algo_entry.jpg]










	GNSS Data Acquisition Task - GNSS_DATA_ACQ_TASK


	Function: acquires GNSS RTCM data and get it decoded to GNSS observation and ephemeris structs


	Source file: gnss_data_acq_task.c


	Algorithm interface: N/A






	GNSS RTK Algorithm Task - GNSS_RTK_TASK


	Function: gets GNSS observation and ephemeris data from GNSS_DATA_ACQ_TASK and fullfill RTK algorithm


	Source file: rtk_task.c


	Algorithm interface: GNSS RTK algorithm entry as shown line #64 in the figure below. Besides, two options for sending NMEA GGA message up to NTRIP server are provided, i.e. via Bluetooth and Ethernet. User has to fill the GGA message (e.g. line #67) with valid position that is required to pull GNSS correction data from NTRIP server to complete a RTK data loop. The example GGA message is filled with a valid internal single point GNSS position from the GNSS chipset, if the user configures the RAWDATA App with a RTCM NTRIP server using the Android OpenRTK App or PC Web GUI, the DEBUG com port outputs the pulled RTCM binary file.






[image: ../_images/rtk_algo_entry.jpg]






	Ethernet Connection Task - ETHERNET_TASK


	Function: provides ethernet driver for internet connectivity


	Source file: eth_task.c


	Algorithm interface: N/A















          

      

      

    

  

    
      
          
            
  
RTK App




          

      

      

    

  

    
      
          
            
  
FreeRTOS

The applications for all OpenIMU units use the FreeRTOS Real-Time Operating System (FreeRTOS Site [https://www.freertos.org]).
FreeRTOS is very widely used, as it is feature-rich, has a small footprint, and can be used in commercial application without
having to expose intellectual property.

FreeRTOS is licensed under the MIT Open Source License (FreeRTOS Licence Page [https://www.freertos.org/a00114.html]).

The FreeRTOS site provides a wealth of informative online documents and PDF books that can be downloaded.

The FreeRTOS source code is supplied, but the user is advised to not change anything in the code.

The many FreeRTOS header files are located in the “FreeRTOS library/include’ directory.  The user is urged to search in that directory when any FreeRTOS related API function prototype, data type, ‘#define’ literal constant, or any other FreeRTOS related item




          

      

      

    

  

    
      
          
            
  
OpenIMU SPI Messaging Framework

1. Introduction


OpenIMU supports a SPI interface for data communications as a one of the choices. To enforce SPI interface mode ‘Data Ready’ signal needs to be forced HIGH of left unconnected on system startup. OpenIMU SPI interface signals described here.

OpenIMU operates as a slave device.

The master device must be configured to communicate with the OpenIMU using the following settings:


	Data transferred in 16-bit word-length and MSB-first


	fCLK ≤ 2.0 MHz


	CPOL = 1 (clock polarity) and CPHA = 1 (clock phase)







2. OpenIMU SPI communication model


OpenIMU has 128 8-bit registers accessible via SPI interface for reading and writing.
The usage of these registers is completely user-defined in time of FW development.
Access to the few registers is implemented in the examples as a reference:


Table 1. SPI registers used in the examples












	Register Number

	Access Type

	Function

	Notes



	82,83,84,88,89 (0x52
0x53,0x54,0x58,0x59)

	r

	
	Unit serial

	number






	BCD format



	86, 87 (0x56, 0x57)

	r

	Product ID

	
BCD format




3000 - OpenIMU300

3300 - OpenIMU330




	116 (0x74)

	r/w

	
	Unit Orientation

	MSB






	
	6







	117 (0x75)

	r/w

	
	Unit Orientation

	LSB






	
	6







	56   (0x38)

	r/w

	LPF Filter Type
For Accel

	
	7







	57   (0x39)

	r/w

	LPF Filter Type
For Rate Sensors

	
	7







	62   (0x3E)

	r

	Sensors Data
Request

	
	4













3. OpenIMU SPI Register Read Methodology

SPI master initiates a register read (for example register 0x04) by clocking in the address
followed by 0x00, i.e. 0x0400, via MOSI. This combination is referred to as a read-command.
It is followed by 16 zero-bits to complete the SPI data-transfer cycle.
As the master transmits the read command over MOSI, the OpenIMU transmits information back over MISO.

In this transmission, the first data-word sent by the OpenIMU (as the read-command is sent) consists
of 16-bits of non-applicable data. The subsequent 16-bit message contains information stored inside two consecutive registers (in this case registers 4 (MSB) and 5(LSB)).

Next figure illustrates register read over SPI interface:

[image: ../_images/SPI_RreadReg.png]
4. OpenIMU SPI Block Mode Read Methodology

User can implement reading blocks of data with arbitrary length and information. Specific dedicated register address will indicate request specific block of data.

For example, register address 0x3e (62) indicates request for reading data block containing current data from unit sensors.  Next table lists corresponding parameters:



Table 2. Block mode message format











	Parameter Numer

	Size (bytes)

	Desctiption



	Status

	2

	Unit Status



	X_Rate

	2

	Rate Sensor output (X)
(200LSB/deg/s)



	Y_Rate

	2

	Rate Sensor output (Y)
(200LSB/deg/s)



	Z_Rate

	2

	Rate Sensor output (Z)
(200LSB/deg/s)



	X_Accel

	2

	Accel Sensor output(X)
(4000LSB/G)



	Y_Accel

	2

	Accel Sensor output(Y)
(4000LSB/G)



	Z_Accel

	2

	Accel Sensor output(Z)
(4000LSB/G)









Read of data block begins when the master requests a read from specific register address (i.e. 0x3E).
Next figure illustrates the read sequence:

[image: ../_images/SPI_ReadBlock.png]
Note: Number of SPI clock pulses should be exactly equal to the length of predefined data packet (in this case – 144 (16 for address 128 for data)) otherwise interface may go out of sync.

5. OpenIMU SPI Register Write Methodology

The SPI master device can perform write into any register. The unit reaction on write operation is completely defined by the user. By default, corresponding data written without any reaction from unit. Written data can be read back.
Unlike reads, writes are performed one byte at a time.

The following example highlights how write-commands are formed:


	Select the write address of the desired register, for example 0x35


	Change the most-significant bit of the register address to 1 (the write-bit), e.g. 0x35 becomes 0xB5


	Create the write command by appending the write-bit/address combination with the value to be written to the register (for example 0x04) - 0xB504




Next figure illustrates the register write over SPI:

[image: ../_images/SPI_WriteReg.png]
6. OpenIMU Orientation programming

OpenIMU Orientation can be changed dynamically by writing corresponding values into the SPI registers 0x74 (MSB) and 0x75 (LSB). Data into register 0x74 should be written first.
There are 24 possible orientation configurations (see below). Setting/Writing the field to anything else has no effect.



Table 3. OpenIMU Orientation field values












	Registers
0x74/0x75

	X

	Y

	Z



	0x0000

	+Ux

	+Uy

	+Uz



	0x0009

	-Ux

	-Uy

	+Uz



	0x0023

	-Uy

	+Ux

	+Uz



	0x002A

	+Uy

	-Ux

	+Uz



	0x0048

	+Ux

	-Uy

	-Uz



	0x0062

	+Uy

	+Ux

	-Uz



	0x006B

	-Uy

	-Ux

	-Uz



	0x0085

	-Uz

	+Uy

	+Ux



	0x008C

	+Uz

	-Uy

	+Ux



	0x0092

	+Uy

	+Uz

	+Ux



	0x009B

	-Uy

	-Uz

	+Ux



	0x0041

	-Ux

	+Uy

	-Uz



	0x00C4

	+Uz

	+Uy

	-Ux



	0x00CD

	-Uz

	-Uy

	-Ux



	0x00D3

	-Uy

	+Uz

	-Ux



	0x00DA

	+Uy

	-Uz

	-Ux



	0x0111

	-Ux

	+Uz

	+Uy



	0x0118

	+Ux

	-Uz

	+Uy



	0x0124

	+Uz

	+Ux

	+Uy



	0x012D

	-Uz

	-Ux

	+Uy



	0x0150

	+Ux

	+Uz

	-Uy



	0x0159

	-Ux

	-Uz

	-Uy



	0x0165

	-Uz

	+Ux

	-Uy



	0x016C

	+Uz

	-Ux

	-Uy









The default factory axis setting for the OpenIMU300ZI for SPI interface is (-Uy, -Ux, -Uz) which defines the connector pointing in the +Z direction and the +X direction going from the connector through the serial number label at the end of the unit. The user axis set (X, Y, Z) as defined by this field setting is depicted in figure below:

[image: ../_images/image6.png]
7. OpenIMU Digital Low Pass Filter selection

OpenIMU low pass filters can be changed dynamically for accelerometers and rate sensors writing corresponding values into the SPI registers 0x38 (for accelerometers) and 0x39 (for rate sensors).
There are 7 possible low pass filter options (see below). Setting/Writing the field to anything else has no effect.



Table 4. OpenIMU Digital filter choices











	
Value

Hex (dec)




	Cutoff Frequency

	Filter Type



	0x00 (0)

	N/A

	Unfiltered



	0x30 (48)

	50 Hz

	Butterworth



	0x90 (144)

	40 Hz

	Butterworth



	0x80 (128)

	25 Hz

	Butterworth



	0x40 (64)

	20 Hz

	Butterworth



	0x50 (80)

	10 Hz

	Butterworth



	0x60 (96)

	5 Hz  (default)

	Butterworth












          

      

      

    

  

    
      
          
            
  
OpenIMU UART Messaging Framework

1. General Settings


The serial port settings are: 1 start bit, 8 data bits, no
parity bit, 1 stop bit, and no flow control. Standard baud rates
supported are: 38400, 57600, 115200, 230400 and 460800.

Common definitions include:

A word is defined to be 2 bytes or 16 bits.

All communications to and from the unit are packets that start with a
single word alternating bit preamble 0x5555. This is the ASCII string
“UU”.

All communication packets end with a single word CRC (2 bytes). CRCs
are calculated on all packet bytes excluding the preamble and CRC
itself. Input packets with incorrect CRCs will be ignored.

All multiple byte values except CRC and packet code are transmitted in Little Endian format
(Least Significant Byte First).

Each complete communication packet must be transmitted to the OpenIMU300xx
inertial system within a 4 second period.




2. Number Formats


Number Format Conventions include:

0x as a prefix to hexadecimal values

single quotes (‘’) to delimit ASCII characters

no prefix or delimiters to specify decimal values.


Note


	All multiple byte number format are transmitted in little-endian format.
E.g., Bytes are transmitted LSB first, followed by lesser significant bytes.


	Bytes in strings are transmitted in left to right string byte order.






The table below defines variable formats:









	ID

	Type

	Size
(bytes)

	Range



	U1

	Unsigned
Char

	1

	0 to 255



	U2

	Unsigned
Short

	2

	0 to 65535



	U4

	Unsigned
Int

	4

	0 to 2^32-1



	U8

	Unsigned
long long

	8

	0 to 2^64-1



	F

	Float
IEEE-754

	4

	1.18^-38
to 3.4^38



	D

	Double
IEEE-754

	8

	2.23^-308
to 1.80^308



	I1

	Signed
Char

	1

	-128 to +127



	I2

	Signed
Short

	2

	-32768 to
32767



	I4

	Signed
Int

	4

	-2^31 to
2^31-1



	I8

	Signed
long long

	8

	-2^63 to
2^63-1



	ST

	String

	N

	ASCII









3. Packet Structure


Below provided description of OpenIMU framework messages. Messages described
the way they occur in serial line. Open IMU framework takes care of wrapping up user
payload and calculating CRC.

3.1 Generic Packet Format

All of the Input and Output packets, except the Ping command, conform to
the following structure:










	0x5555

	
<2-byte

packet code

(U2)>




	
<payload

byte-length

(U1)>




	
<variable

length

payload>




	

<2-byte



CRC (U2)>












3.2 Packet Header

The packet header is always the bit pattern 0x5555.

3.3 Packet Code

The packet code is always two bytes long in unsigned short integer
format. Most input and output packet types for convenience can be
interpreted as a pair of ASCII characters. For example code “aB” will
translate to hex value 0x6142”.

NOTE:



	First character value should be more or equal ‘a’ (0x61)


	Packet code transmitted in Big Endian format







3.4 Payload Length

The payload length is always a one byte unsigned character with a range
of 0-255. The payload length byte is the length (in bytes) of the
<variable length payload> portion of the packet ONLY, and does not
include the CRC.

3.5 Payload

The payload is of variable length based on the packet type.

3.6 16-bit CRC-CCITT

Packets end with a 16-bit CRC-CCITT calculated on the entire packet
excluding the 0x5555 header and the CRC field itself. A discussion of
the 16-bit CRC-CCITT and sample code for implementing the computation of
the CRC is included at the end of this document. This 16-bit CRC
standard is maintained by the International Telecommunication Union
(ITU). The highlights are:

Width = 16 bits

Polynomial 0x1021

Initial value = 0xFFFF

No XOR performed on the final value.

See Appendix A for sample code that implements the 16-bit CRC algorithm.

3.6 NAK Packet

NAK packet sent in response to the unknown or corrupted input message.
NAK packet has next format:










	0x5555

	
0x0000




	
2




	
code of

received

packet or 0




	

<2-byte



CRC (U2)>












4. Messaging Overview


Table below summarizes the messages initially introduced in OpenIMU300xx framework.
New messages can be easily added (please check chapter “Procedure for adding new message”)
Packet codes are assigned mostly using the ASCII mnemonics defined above
and are indicated in the summary table below and in the detailed
sections for each command. The payload byte-length is often related to
other data elements in the packet as defined in the table below. The
referenced variables are defined in the detailed sections following.
Output messages are sent from the OpenIMU Series inertial system to the
user system as a result of user request or a continuous packet output
setting. Interactive messages can be sent from the user system to the OpenIMU
Series inertial system and will result in an associated Reply Message or
NAK message. Note that reply messages typically have the same <2-byte
packet type (U2)> as the input message that evoked it but with a
different payload.





Messages Table








	ASCII

	
Code

(U2)




	
Payload

Length

(U1)




	Function

	Type



	
Interactive

Messages






	pG

	0x7047

	0

	
Ping







	
Input/Reply

Message






	uC

	0x7543

	N
(up to 248)

	
Update

Config

Command/

Response




	
Input/Reply

Message












	uP

	0x7550

	12

	
Update

Parameter

Command/

Response




	
Input/Reply

Message












	uA

	0x7541

	N
(up to 240)

	
Update

All

Command/

Response




	
Input/Reply

Message












	sC

	0x7343

	0

	
Save

Config

Command/

Response




	
Input/Reply

Message












	rD

	0x7244

	0

	
Restore

Defaults

Command/

Response




	
Input/Reply

Message












	sC

	0x7343

	0

	
Save

Config

Command/

Response




	
Input/Reply

Message












	gC

	0x6743

	8

	
Get

Config

Command/

Response




	
Input/Reply

Message












	gP

	0x6750

	4

	
Get

Parameter

Command/

Response




	
Input/Reply

Message












	gA

	0x6741

	0

	
Get

All Params

Command/

Response




	
Input/Reply

Message












	gV

	0x6756

	N

	
Get

Version

Command/

Response




	
Input/Reply

Message












	
Output

Messages






	zT

	0x7a54

	4

	
Counter







	
Output

Message






	z1

	0x7a31

	40

	
Scaled

Sensors

Data




	
Output

Message












5. OpenIMU Interactive Messages


5.1 User Ping Command









	Ping (‘pG’ = 0x7047)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7047

	0

	<CRC (U2)>






The user Ping command has no payload. Sending the Ping command will cause the
unit to send a Ping response with next format:










	Ping (‘pG’ = 0x7047)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7047

	N

	
Unit Model and Serial

Number  <S> (string)




	<CRC (U2)>






The user Ping response will return null-terminated string, containing unit model name
and unit serial number.

5.2 Update Config Command










	(‘uC’ = 0x7543)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7543

	8+8*N

	N Parameters

	<CRC (U2)>






The Update Config command used to update and apply N consecutive user-defined
configuration parameters at a time in unit. Parameter value is 64 bit (8 bytes)
and can have arbitrary type.

Update Config Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number of
consecutive

parameters
to update




	U4

	LSB First



	4

	
Offset of first
parameter in

unit config
structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	:

	:

	:

	:



	8+N*8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Upon reception – each parameter is validated (if desired) and if validation passes
parameter gets written into gUserConfiguration structure and also applied to the
system on-the-fly(if desired). If value of one parameter is invalid – all parameters
ignored.
Updated configuration parameters will be active until next unit power cycle or reset.

Update Config command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7543

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.3 Update Parameter Command










	(‘uP’ = 0x7550)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7550

	12

	
	<CRC (U2)>






The Update Parameter command used to update and apply single user-defined
configuration parameter in unit. Parameter value is 64 bit (8 bytes) and can have
arbitrary type.

Update Parameter Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Offset of

parameter

in unit config

structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Upon reception parameter value is validated (if desired) and if validation passes
parameter gets written into gUserConfiguration structure and also applied to the
system on-the-fly(if desired). If value of the parameter is invalid – it ignored.
Updated configuration parameter will be active until next unit power cycle or reset.

Update Parameter command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7550

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.4 Update All Command










	(‘uA’ = 0x7541)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7541

	8N

	N (up to 30) parameters

	<CRC (U2)>






The Update All command used  to update/apply up to 30 consecutive user-defined configuration
parameters at a time in unit, starting from first parameter in user configuration
structure. Each parameter has size 8 bytes (64 bit) and can have arbitrary type.

Update All Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	Parameter Value
(first
parameter)

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	… … … … … … … … . .



	N*8

	Parameter Value
(last parameter)

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Upon reception – each parameter is validated (if desired) and if validation passes
parameter gets written into gUserConfiguration structure, starting from first parameter
(offset 0) and also applied to the system on-the-fly(if desired). If value of one parameter
is invalid – all parameters ignored. First two parameters are ignored.
Updated configuration parameters will be active until next unit power cycle or reset.

Update All command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7541

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.5 Save Config Command









	Save Config (‘sc’ = 0x7343)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7343

	0

	<CRC (U2)>






The Save Config command has no payload. Upon reception of “Save Config” command unit will
save current gUnitConfiguration structure into EEPROM and updated parameters will be applied to the
unit all the times upon startup (untill new changes will be made).

Save Config command will have next response in in case of success:









	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7343

	0

	<CRC (U2)>






5.5 Restore Defaults**









	Restore defaults (‘rd’ = 0x7244)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7244

	0

	<CRC (U2)>






The Restore defaults command has no payload. Upon reception of “Restore Defaults” command unit will
save default configuration structure gDefaultUserConfig into EEPROM and updated parameters will be applied to the
unit all the times upon startup (untill new changes will be made).

Restore Defaults command will have next response in case of success:









	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7244

	0

	<CRC (U2)>






5.6 Get Config Command










	(‘gC’ = 0x6743)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6743

	8

	
	<CRC (U2)>






The Get Config command used to retrieve N consecutive user-defined
configuration parameters at a time from unit. Parameter value is 64 bit (8 bytes)
and can have arbitrary type.

Get Config Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number

Of

consecutive

parameters

to update




	U4

	LSB First



	4

	
Offset of

first

parameter

in unit config

structure




	U4

	LSB First






Get Config command will have next response:










	(‘gC’ = 0x6743)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6743

	8+8*N

	N parameters

	<CRC (U2)>






Get Config Response Payload Format in case of success:









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number

Of

consecutive

parameters

to update




	U4

	LSB First



	4

	
Offset of

first

parameter

in unit config

structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	:

	:

	:

	:



	8+N*8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Get Config Response Payload Format in case of error:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6743

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.7 Get All Command









	(‘gA’ = 0x6741)

	
	
	


	Preamble

	Packet Type

	Length

	Termination



	0x5555

	0x6741

	0

	<CRC (U2)>






The Get All command used to retrieve N (up to 30) consecutive user-defined
configuration parameters at a time from unit, starting from first parameter in gUserConfiguration
structure. Parameter value is 64 bit (8 bytes) and can have arbitrary type.

Get All command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6741

	8*N

	N parameters

	<CRC (U2)>






Get Config Response Payload Format in case of success:









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number

Of

consecutive

parameters

to update




	U4

	LSB First



	4

	
Offset of

first

parameter

in unit config

structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	:

	:

	:

	:



	8+N*8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Get All Response Payload Format in case of error:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6741

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.8 Get Parameter Command










	(‘gP’ = 0x6750)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6750

	4

	
	<CRC (U2)>






The Get Parameter command used to retrieve one user-defined configuration parameter
from unit gUserConfiguration structure. Parameter value is 64 bit (8 bytes) and
can have arbitrary type.

Get Parameter command payload format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Offset of

parameter

in unit config

structure




	U4

	LSB First






Get Parameter command will have next response:










	(‘gP’ = 0x6750)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6750

	12

	parameter

	<CRC (U2)>






Get Parameter response rayload format in case of success:









	Byte
Offset

	Name

	Format

	Notes



	0

	
Offset of

parameter

in unit config

structure




	U4

	LSB First



	4

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Get Parameter response payload format in case of error:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6750

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.9 Get User Version Command









	(‘gV’ = 0x6756)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x6756

	0

	<CRC (U2)>






The Get Version command has no payload. Sending the Get Version command will cause the
unit to send a response with next format:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6756

	N

	
User Version String




	<CRC (U2)>






The Get Version response will return null-terminated string, user version. User version string
defined in the UserMessaging.c file.




6. OpenIMU Output messages


Below provided examples of OpenIMU output messages implemented in OpenImu framework.
Users can easily add new messages or discard these examples at their discretion.
Output messages are to be continuously sent out by unit with preconfigured message rate.

6.1 User Test Message

User Test output message has next format:










	(‘zT’ = 0x7a54)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7a54

	4

	
	<CRC (U2)>






User Test Message payload has next format:









	Byte
Offset

	Name

	Format

	Notes



	0

	Counter

	U4

	LSB First






Counter is simple message counter which will increase by 1 with in every consecutive Test message

“6.2 User Sensors Data Message*

User Sensors Data  message has next format:










	(‘z1’ = 0x7a31)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7a31

	40

	
	<CRC (U2)>






User Sensors Data Message payload has next format:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer at

the moment of

sensors sampling




	U4

	LSB First



	4

	
Acceleration

value for axis X

(in G)




	F4

	LSB First



	8

	
Acceleration

value for axis Y

(in G)




	F4

	LSB First



	12

	
Acceleration

value for axis Z

(in G)




	F4

	LSB First



	16

	
Rotation speed

for axis X (dps)




	F4

	LSB First



	20

	
Rotation speed

for axis Y (dps)




	F4

	LSB First



	24

	
Rotation speed

for axis Z (dps)




	F4

	LSB First



	28

	
Magnetic field

for axis X (G)




	F4

	LSB First



	32

	
Magnetic field

for axis Y (G)




	F4

	LSB First



	36

	
Magnetic field

for axis Z (G)




	F4

	LSB First






6.3 User Arbitrary Data Message

User Arbitrary Data  message has next format:










	(‘z2’ = 0x7a32)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7a32

	27

	
	<CRC (U2)>






User Arbitrary Data Message payload has next format:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer at

the moment of

sensors sampling




	U4

	LSB First



	4

	Data of type Byte

	U1

	


	5

	Data of type short

	I2

	LSB First



	7

	Data of type int

	I4

	LSB First



	11

	Data of type int64

	I8

	LSB First



	19

	Data of type double

	D4

	LSB First









7 Steps to create your own interactive or output packet in embedded OpenIMU software framework


User packet processing engine located in the file UserMessaging.c.

7.1 To create new interactive packet


	Add new input packet type into the enumerator structure UserInPacketType in the file UserMessaging.h before USR_IN_MAX




typedef enum {
USR_IN_NONE         = 0 ,
USR_IN_PING             ,
USR_IN_UPDATE_CONFIG    ,
USR_IN_UPDATE_PARAM     ,
USR_IN_UPDATE_ALL       ,
USR_IN_SAVE_CONFIG      ,
USR_IN_RESTORE_DEFAULTS ,
USR_IN_GET_CONFIG       ,
USR_IN_GET_PARAM        ,
USR_IN_GET_ALL          ,
USR_IN_GET_VERSION      ,
// add new packet type here, before USR_IN_MAX
USR_IN_MAX              ,
}UserInPacketType;





2. Add new packet type and code into the structure UserInputPackets in the file UserMessaging.c. Packet code consists of
two bytes and can be chosen arbitrary, but first byte SHOULD have value more or equal 0x61.

usr_packet_t userInputPackets[] = {             //
{USR_IN_NONE,               {0,0}},   //  "  "
{USR_IN_PING,               "pG"},
{USR_IN_UPDATE_CONFIG,      "uC"},
{USR_IN_UPDATE_PARAM,       "uP"},
{USR_IN_UPDATE_ALL,         "uA"},
{USR_IN_SAVE_CONFIG,        "sC"},
{USR_IN_RESTORE_DEFAULTS,   "rD"},
{USR_IN_GET_CONFIG,         "gC"},
{USR_IN_GET_PARAM,          "gP"},
{USR_IN_GET_ALL,            "gA"},
{USR_IN_GET_VERSION,        "gV"},
// place new input packet code here, before USR_IN_MAX
{USR_IN_MAX,                {0xff, 0xff}},   //  ""
};





3. Add code which handles input packet into the function HandleUserInputPacket in the file UserMessaging.c . As a part of packet handling
fill up desired response payload (starting from address ptrUcbPacket->payload) and provide response payload length in the parameter
ptrUcbPacket->payloadLength. If no response payload required – provide payload length of 0. The packet code in the response will be
the same as in the command. If erroneous conditions discovered during packet processing – set valid variable to FALSE so system will
respond with NAK packet. Additional diagnostics in arbitrary format can be provided in the response payload (see uP packet example above).

case USR_IN_UPDATE_PARAM:
        UpdateUserParam((userParamPayload*)ptrUcbPacket->payload, &ptrUcbPacket->payloadLength);
        break;






	Done




7.2 To create new output packet


	Add new output packet type into the enumerator structure UserOutPacketType in the file UserMessaging.h




// User input packet codes, change at will
typedef enum {
USR_OUT_NONE  = 0,  // 0
USR_OUT_TEST,       // 1
USR_OUT_DATA1 ,     // 2
USR_OUT_DATA2 ,     // 2
// add new output packet type here, before USR_OUT_MAX
USR_OUT_MAX
}UserOutPacketType;





2. Add new packet type and code into the structure UserOutputPackets in the file UserMessaging.c. Packet code can be chosen arbitrary,
but first byte SHOULD have value more or equal 0x61 and the packet code should be unique among input and output packets.

// packet codes here should be unique -
// should not overlap codes for input packets and system packets
// First byte of Packet code should have value  >= 0x61
usr_packet_t userOutputPackets[] = {
//   Packet Type                Packet Code
{USR_OUT_NONE,              {0x00, 0x00}},
{USR_OUT_TEST,              "zT"},
{USR_OUT_DATA1,             "z1"},
{USR_OUT_DATA2,             "z2"},
// place new type and code here
{USR_OUT_MAX,               {0xff, 0xff}},   //  ""
};





3. Add code which handles input packet into the function HandleUserOutputPacket in the file UserMessaging.c. Fill up desired packet payload
(starting from address payload) and provide response payload length in the parameter payloadLen. If no response payload required – provide payload length of 0.

        case USR_OUT_DATA1:
{
    int n = 0;
    double accels[3];
    double mags[3];
    double rates[3];
    data1_payload_t *pld = (data1_payload_t *)payload;

                pld->timer  = platformGetDacqTime();
    GetAccelData_mPerSecSq(accels);
    for (int i = 0; i < 3; i++, n++){
        pld->sensorsData[n] = (float)accels[i];
    }
    GetRateData_degPerSec(rates);
    for (int i = 0; i < 3; i++, n++){
        pld->sensorsData[n] = (float)rates[i];
    }
    GetMagData_G(mags);
    for (int i = 0; i < 3; i++, n++){
        pld->sensorsData[n] = (float)mags[i];
    }
    *payloadLen = sizeof(data1_payload_t);
}





4. To activate output of the packet use function SetUserPacketType in file UserMessaging.c  and provide desired packet type as a parameter. Or provide output packet
type and packet rate in default user configuration in file UserConfiguration.c. Output of specific packet can also be changed “on-the-fly” by sending to unit
command “uP” with parameter number 3 and desired parameter value. Output packet rate can be changed “on-the-fly ” by sending to unit command “uP” with parameter
number 4 and desired parameter value.

// Default user configuration structure
// Saved into EEPROM of first startup after reloading the code
// or as a result of processing "rD" command
// Do Not remove - just add extra parameters if needed
// Change default settings  if desired
const UserConfigurationStruct gDefaultUserConfig = {
.dataCRC             =  0,
.dataSize            =  sizeof(UserConfigurationStruct),
.userUartBaudRate    =  115200,
.userPacketType      =  "z1",
.userPacketRate      =  50,
.lpfAccelFilterFreq  =  50,
.lpfRateFilterFreq   =  50,
.orientation         =  "+X+Y+Z"
// add default parameter values here, if desired
} ;






	Done










          

      

      

    

  

    
      
          
            
  
Software DataFlow





	The OpenIMU software data flow is depicted in the following diagram.

	
	The double circle icons denote inputs


	The single circle icons denote software components


	The thick single circle icons denote outputs


	the double horizontal line icons denote data stores


	The arrow icons denote data that is sent from one software component, input, or data store to a software component
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Sampling and Filtering Modules

To Be Provided




          

      

      

    

  

    
      
          
            
  
Settings Modules

Configuration parameters in EEPROM


OpenIMU software framework provides possibility for user to store arbitrary configuration parameters
in nonvolatile EEPROM. These parameters will be validated and applied to system upon reset or power-up.
Parameters which passed validation will override default factory settings.
User EEPROM has size 16KB. Each parameter in user EEPROM has size 8 bytes (64-bit word), so user EEPROM
can contain up to 2K parameters. If desired one can use few consecutive parameters to store arbitrary
value or data structure. One parameter is good for a value of double or long long type. Also it can be
considered as 8 bytes of arbitrary data (string or array). There are few pre-allocated recommended
parameters which can be useful while working with OpenIMU software framework. Initial definition of
parameters structure located in file UserConfiguration.h. New arbitrary parameters are welcome.

/// User defined configuration structure
///Please notice, that parameters are 64 bit to accommodate double types as well as string or byte array types






	typedef struct {

	uint64_t           dataCRC;             /// CRC of user configuration structure CRC-16
uint64_t           dataSize;            /// Size of the user configuration structure


	int64_t            userUartBaudRate;    /// baud rate of user UART, bps.

	/// valid options are:
/// 4800
/// 9600
/// 19200
/// 38400
/// 57600
/// 115200
/// 230400
/// 460800



	uint8_t            userPacketType[8];   /// User packet to be continuously sent by unit

	/// Packet types defined in structure UserOutPacketType
/// in file UserMessaging.h



	int64_t            userPacketRate;      /// Packet rate for continuously output packet, Hz.

	/// Valid settings are: 0 ,2, 5, 10, 20, 25, 50, 100, 200





int64_t            lpfAccelFilterFreq;  /// built-in lpf filter cutoff frequency selection for accelerometers
int64_t            lpfRateFilterFreq;   /// built-in lpf filter cutoff frequency selection for rate sensors


/// Options are:
/// 0  -  Filter turned off
/// 50 -  Butterworth LPF 50HZ
/// 20 -  Butterworth LPF 20HZ
/// 10 -  Butterworth LPF 10HZ
/// 05 -  Butterworth LPF 5HZ
/// 02 -  Butterworth LPF 2HZ
/// 25 -  Butterworth LPF 25HZ
/// 40 -  Butterworth LPF 40HZ





	uint8_t           orientation[8];

	/// unit orientation as string
/// “SFSRSD”
///  Where S is sign (+ or -)
///  F - forward axis (X or Y or Z)
///  R - right axis (X or Y or Z)
///  D - down axis (X or Y or Z)
///  For example “+X+Y+Z”





//***********************************************************************************
// here is the border between arbitrary parameters and platform configuration parameters
//***********************************************************************************

// place new arbitrary configuration parameters here
// parameter size should even to 8 bytes
// Add parameter offset in UserConfigParamOffset structure if validation or
// special processing required





} UserConfigurationStruct;




Default configuration


Default system parameters reside in the gDefaultUserConfig structure in file UserConfiguration.c.
They are becoming active each time new application image is loaded to the unit or upon reception of the “rD” command.




Mapping different values into 64-bit parameter


Below provided recommended mapping of the values of different types into 64-bit parameter.
The mapping though can be arbitrary and in that case should be processed accordingly.


	Mapping of 4-byte integer into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	
	
	MSB

	0

	0

	0

	0











	Mapping of 2-byte integer into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	MSB

	0

	0

	0

	0

	0

	0











	Mapping of 4-byte floating point value into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	
	
	MSB

	0

	0

	0

	0











	Mapping of 8-byte double value into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	
	
	
	
	
	
	MSB











	Mapping byte array or string into 64-bit parameter




Byte (character) indexes match offset in the 64-bit parameter














	0

	1

	2

	3

	4

	5

	6

	7









Adding new parameter

One can arbitrary add new configuration parameters. The steps are:


	Add required parameter into the UserConfigurationStruct in the file UserConfiguration.h after system parameters “border” (see above).


	Add new configuration parameter enumerator into UserConfigParamOffset in the file UserConfiguration.h after USER_LAST_SYSTEM_PARAM.


	Add default value of new parameter into structure gDefaultUserConfig in file UserConfiguration.c (if desired)


	Add validation of new parameter into function UpdateUserParameter (if desired) or explicitly use parameter at your discretion







Changing configuration parameters


Configuration parameters can be changed any time by sending specific commands (messages) to the unit ((“uP” “uA” “uC”).
Upon reception of corresponding message parameters are validated (if desired), placed into gUserConfiguration structure
and applied to the unit (if desired). See section Messaging Modules for details. Updated parameters will last until unit
reset or power cycle.




Retrieving configuration parameters.


Configuration parameters can be read from unit any time by sending commands “gC” “gP” or “gA” (see messaging-modules).




Saving configuration parameters


If desired, updated parameters can be saved into EEPROM and will be permanently active until changed. It can be achieved by sending “sC”
command to the unit. Upon reception of this command gUserConfiguration structure saved into EEPROM.




Restoring default configuration


If desired, default configuration can be restored and saved into EEPROM. It can be achieved by sending command “rD” to the unit.







          

      

      

    

  

    
      
          
            
  
Tutorial APP

A simple static tilt sensor demo is provided here to show how to add your own algorithm and output algorithm results.

OpenIMU provides a user-friendly interface to add your own algorithms. To do that, the user need to get sensor data, run the algorithm and output algorithm results. All interfaces related to these operations are handled in src/dataProcessingAndPresentation.c. And all user codes implementing the algorithms and results packaging are located in src/user/ directory.


Get algorithm input

The platform provides APIs to access all available sensor data, as shown in the following table.







	Sensors

	Get sensor data API





	Accelerometer

	void  GetAccelsData(double *data)



	Gyroscope

	void  GetRatesData(double *data)



	Magnetometer

	void  GetMagsData(double *data)



	GPS

	void  GetGPSData(gpsDataStruct_t *data)



	Accelerometer temperature

	void  GetAccelsTempData(double *temps)



	Gyroscope temperature

	void  GetRatesTempData(double *temps)



	Board temperature

	void  GetBoardTempData(double *temp)






Usually, the accelerometer and gyroscope data are already temperature-calibrated.



Run the algorithm

A user defined algorithm should provide its main procedure as:

void *RunUserNavAlgorithm(double *accels, double *rates, ……, int dacqRate)





where accels and rates are pointers to corresponding sensor measurements, and dacqRate is the sensor sampling rate.

This procedure is implemented in src/user/userAlgorithm.c as follows:

void *RunUserNavAlgorithm(double *accels, double *rates, double *mags,
                          gpsDataStruct_t *gps, int dacqRate)
{

   //---------------------------get accel data---------------------
   float a[3]; // accel of this step
   a[0] = accels[0];
   a[1] = accels[1];
   a[2] = accels[2];

   //-----------------------calculate euler angles------------------
   results[2] = a[0];
   results[3] = a[1];
   results[4] = a[2];
   float accel_norm = sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
   a[0] /= accel_norm;
   a[1] /= accel_norm;
   a[2] /= accel_norm;
   results[0] = asin(a[0]) * R2D;
   results[1] = atan2(-a[1], -a[2]) * R2D;

   //--------------------------return results-----------------------
   return &results;
}





It just gets the accelerometer measurement, normalizes it, calculates pitch and roll angles, and returns the results. I keep all the input parameters here. Indeed, I need only accels. The user could remove unused parameters in your algorithm.

results is a global variable declared as

// algorithm results, [pitch roll ax ay az], in units of deg and g
static float results[5];





and R2D is a macro converting radian to degree:

#define R2D 57.2957795130823





User may also need to implement an algorithm initialization procedure. It is not necessary in this demo, but will be shown here.

void InitUserAlgorithm()
{
   // place additional required initialization here
   // initialize sample rate and period
   results[0] = 0.0;
   results[1] = 0.0;
}





Now, a simple user-fined algorithm is done. The framework will automatically call InitUserAlgorithm at the initialization stage, and periodically call RunUserNavAlgorithm to run the user-defined algorithm and get results.



Output results via debug UART

This section shows how to use the debug UART (default baud rate is 38400) on the EVB to output algorithm results. The user could also output other information the user are interested in.

To use the debug UART, the user needs to include debug.h. For example, I want to output algorithm results after the algorithm is called in dataProcessingAndPresentation.c.


	include the header file in dataProcessingAndPresentation.c.




#include "debug.h"






	output algorithm results. The results are converted to plain text and then transmitted via the debug UART. The user can also choose to encode the results per user requirements.




// Output results via debug UART. Downsampled by osr due to limited UART bandwidth
static int out_cntr = 0;
int osr = 8;
out_cntr++;
if(out_cntr==osr)
{
    out_cntr = 0;
    // generate output string from results
    float *tlt = (float*)results;
    char buffer[128];
    sprintf(buffer,
            "pitch:%.3f\troll:%.3f\tax:%.3f\tay:%.3f\taz:%.3f\n",
            tlt[0], tlt[1], tlt[2], tlt[3], tlt[4]);
    // output to debug UART
    DebugPrintString(buffer);
}





Compile the project, upload the firmware, and the user can get result via debug UART.



Implementing user-defined packets via UART

The debug UART is mainly intended for debug usage. The user may want to output algorithm results via the interface UART (default baud rate is 57600) on the EVB. OpenIMU provides an easy-to-use framework for the user to define your own packets. User-defined packets are declared and implemented in UserMessaging.h and UserMessaging.c.


	Add your packet code in UserMessaging.h.




I added a USR_OUT_TLT packet as an example.

// User input packet codes, change at will
typedef enum {
   USR_OUT_NONE  = 0,  // 0
   USR_OUT_TEST,       // 1
   USR_OUT_DATA1 ,     // 2
   USR_OUT_TLT,        // 3
// place output packet definitions here
   USR_OUT_MAX
}UserOutPacketType;






	Add encoding procedure in UserMessaging.c.




User defined packets are encoded by this procedure:

BOOL HandleUserOutputPacket(uint8_t *payload, uint8_t *payloadLen)





After I added my encoding codes, this procedure is as follows.

BOOL HandleUserOutputPacket(uint8_t *payload, uint8_t *payloadLen)
{
   static uint32_t _testVal = 0;
   BOOL ret = TRUE;

       switch (_outputPacketType) {
       case USR_OUT_TEST:
           {  uint32_t *testParam = (uint32_t*)(payload);
            *payloadLen = USR_OUT_TEST_PAYLOAD_LEN;
            *testParam  = _testVal++;
           }
           break;
       case USR_OUT_DATA1:
           {   int n = 0;
               double accels[3];
               double mags[3];
               double rates[3];
               float *sensorData = (float*)(payload);
               *payloadLen = USR_OUT_DATA1_PAYLOAD_LEN;
               GetAccelsData(accels);
               for (int i = 0; i < 3; i++, n++){
                   sensorData[n] = (float)accels[i];
               }
               GetRatesData(rates);
               for (int i = 0; i < 3; i++, n++){
                   sensorData[n] = (float)rates[i];
               }
               GetMagsData(mags);
               for (int i = 0; i < 3; i++, n++){
                   sensorData[n] = (float)mags[i];
               }
           }
           break;
       // place additional user packet preparing calls here
       // case USR_OUT_XXXX:
       //      *payloadLen = YYYY; // total user payload length, including user packet type
       //      payload[0]  = ZZZZ; // user packet type
       //      prepare dada here
       //      break;
       case USR_OUT_TLT:
           {
               if ( tlt == NULL )
               {
                   *payloadLen = 0;
                   ret = FALSE;
               }
               else
               {
                   // get resutls
                   *payloadLen = sprintf((char*)payload,
                           "pitch:%.3f\troll:%.3f\tax:%.3f\tay:%.3f\taz:%.3f\n",
                           tlt[0], tlt[1], tlt[2], tlt[3], tlt[4]);
               }
           }
           break;

       default:
            *payloadLen = 0;
            ret         = FALSE;
            break;      /// unknown user packet, will send error in response
       }

       return ret;
}





This procedure will be called at the defined rate by the framework.

The framework default outputs calibrated IMU sensor data. To output your own packets, the user should tell the framework the packet code of your packet, and then feed the algorithm results to the encoding procedure we just implemented above.


	Register the user-defined packet in the framework.




This can be done by calling setOutputPacketCode when initializing user-defined algorithm in dataProcessingAndPresentation.c. To use setOutputPacketCode, the user need

#include "SystemConfiguration.h"





and then call it in

void initUserDataProcessingEngine()
{
   InitUserDataStructures();    // default implementation located in file UserData.c
   InitUserFilters();           // default implementation located in file UserFilters.c
   InitUserAlgorithm();         // default implementation located in file user_algorithm.c
   setOutputPacketCode(0x7A32);    // set output packet to user defined packets
}





In this way, the default packet will be replaced by the user-defined packet.


	Feed algorithm results to the encoding procedure.




In dataProcessingAndPresentation.c, after calling the user-defined algorithm, the framework will call

WriteResultsIntoOutputStream(results) ;   // default implementation located in file file UserMessaging.c





to feed results to UserMessaging.c. WriteResultsIntoOutputStream is implemented like this:

void WriteResultsIntoOutputStream(void *results)
{
   //  implement specific data processing/saving here
   tlt = (float*)results;
}





where tlt is a global variable declared as

static float *tlt;  // pointer to algorithm results





Now, compile the project, upload the firmware, and the user can get results via the interface UART.
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